Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de...

14
Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure 10.9, page 404

Transcript of Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de...

Page 1: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

Ajustes a presión

Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero.

Text Reference: Figure 10.9, page 404

Page 2: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

Ajustes por interferencia

Figure 10.10 Vista frontal que muestra (a) cilindro ensamblado con un ajuste por interferencia y b) agujero y eje hueco desensamblados(también se muestra la presión de interferencia).

Text Reference: Figure 10.10, page 405

Page 3: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

Formulación

Empleando la formulación de cilindros de pared gruesa, donde:Pi= Pf; r = rf y ri = rf, sustituyendo:

Agujero

fr

fo

foft

P

rr

rrP

22

22 )(

Eje:

fr

if

ifft

P

rr

rrP

22

22 )( Para ejes macizos (ri=0).

)(

222

2

fo

offr rrE

rrP

))((

)(2

;/

)(

)(

)(

)(

2222

223

22

22

22

22

iffoh

ioffr

hshs

s

ifh

if

h

h

foh

foffr

rrrrE

rrPr

EEE

EsrrE

rr

ErrE

rrPr

Deformación.

Page 4: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

Formulación

klPrkrFT

lPrrFT

lr

FP

fffmáxefectivo

fffmáx

f

máxfmáx

)2(

2

2

2

2

Fuerza y Par

K =1/ b=∞K =0/ b=0K =0,8/ b=d

Magnitudes auxiliares K, sgún DIN 7190 para aceros con E= 200 GPa y fundición gris con E=100 GPa.

Page 5: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

Formulación

222camáx

lr

P

lr

P

f

cc

f

aa

2

2

2

2

Relación: esfuerzos axial y circunferencial.

Page 6: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

Dado que para cada grupo de diametros nominales se pueden elegir un numero eievado de zonas de tolerancia y de grados de calidad, se recomienda utilizar solamente algunas zonas de tolerancia, llamadas zonas de tolerancia preferentes.

Tolerancias

Para determinar los juegos límites se tendra en cuenta que:# Se debe evitar todo exceso de precision.# Se debe adoptar siempre que sea posible mayor tolerancia para el eje que para el agujero.# Se deben elegir las tolerancias de forma que las calidades del eje y del agujero no varien en más de dos indices.# Se debe tener en cuenta la experiencia en ajustes análogos.# Montaje de las piezas.

Al fijar los juegos limites de un acoplamiento se deben tener en cuenta:# Estado superficial.# Naturaleza del material.# Velocidad de funcionamiento.# Naturaleza, intensidad, direccion, sentido: variacion y prioridad de los esfuerzos.# Engrase.# Desgaste.# Geometría del conjunto.

Page 7: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

Tolerancias: Ajustes recomendados

Fino prensado: Casquinos y coronas de bronce, acoplamientos en extremos de ejes, etc. Fino forzado duro: casquiHos de bronce, manguitos en cubos, collares calados sobre ejes, etc. Fino forzado medio: rodamientos a bolas, discos de excéntrica, poleas y volantes, manivetas, etc. Fino forzado ligero: piezas de máquinas y herramientas y otras desmontables con frecuencia, etc.Fino deslizante: engranajes de cambios de velocidad, piezas importantes de maquinas herramientas, etc.Fino giratorio : émbolos, bridas, collares de retention, anillos de rodamientos, etc.Fino holgado: cojinetes de bielas, ruedas dentadas de cajas de cambios, etc.Medio deslizante: polleas fijas, manivelas y acoplamientos deslizantes sobre el eje, etc.Medio giratorio: piezas de rotores, bombas ventitadores, etc.Medio holgado: soportes de ejes, poleas locas, piezas de centrado, etc.

Basto deslizante: piezas de maquinaria agricola, piezas de distancia, etc.Basto giratorio: ejes de movimiento longitudinal, aros, palancas y manivdas desmontables. etc.Basto holgado: cojinetes de maquinas domesticas, pasadores ejes, de interruptores, etc.Basto muy holgado: piezas de locomotoras cojinetes de ejes de freno, etc.

Page 8: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

Tolerancias: Ajustes recomendados Se proporciona el ajuste máximo y la tolerancia

Page 9: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

Tolerancias: Ajustes recomendados Se proporciona el ajuste máximo y la tolerancia

Page 10: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

Ejemplo

Calcular el ajuste necesario para transmitir movimiento con un moto reductor al que se le acopla una polea.

a) Dimensionar el eje de salida del reductor.

b) Identificar el mejor ajuste (cuyo apriete medio cumpla todos los requerimientos).

Datos:

Motor: 1CV a 1400 rpm con rend= 0,85

Reductor: i= 100 rend=0,7

Sobre un eje macizo mediante una polea de dext=90 mm.

Datos: Sy= 2950 kg/cm2, μ=0,12 Acero-Acero. , k=0,85, L=30 mm

1HP= 746W

Page 11: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

Ejemplo

Calcular el ajuste necesario para transmitir 40 CV sobre un eje hueco de do=50 mm y di= 30 mm mediante una polea de dext=90 mm.

Datos: Sadm= 2500 kg/cm2, n= 500 rpm, μ=0,12 Acero-Acero. B=5 cm, k=0,8

1HP= 746W

Page 12: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

Esfuerzos Térmicos

Material Modulus of Elasticity, EGPa Mpsi

MetalsAluminumAluminum alloysa

Aluminum tinBabbitt, lead-based white metalBabbitt, tin-based white metalBrassesBronze, aluminumBronze, leadedBronze, phosphorBronze, porousCopperIron, grey castIron, malleable castIron, spheroidal graphiteb

Iron, porousIron, wroughtMagnesium alloysSteel, low alloysSteel, medium and high alloysSteel, stainlessc

Steel, high speedZinc alloysd

62706329521001179711060124109170159801704119620019321250

9.010.29.14.27.514.517.014.116.08.718.015.824.723.111.624.75.928.429.028.030.77.3

PolymersAcetal (polyformaldehyde)Nylons (polyamides)Polyethylene, high densityPhenol formaldehydee

Rubber, naturalf

2.71.90.97.0

0.004

0.390.280.131.02

0.0006Ceramics

Alumina (Al2O3)GraphiteCemented carbidesSilicon carbide (SiC)Silicon nitride (Si3N4)

39027450450314

56.63.965.365.345.5

aStructural alloysbFor bearingscPrecipitation-hardened alloys up to 211 Gpa (30 Mpsi).dSome alloys up to 96 Gpa (14 Mpsi).eFilledf2.5%-carbon-black “mechanical” rubber.

Material Linear Thermal ExpansionCoefficient, a

(°C) -1 (°F) -1

MetalsAluminumAluminum alloysa

Aluminum tinBabbitt, lead-based white metalBabbitt, tin-based white metalBrassesBronzesCopperCopper leadIron, castIron, porousIron, wroughtMagnesium alloysSteel, alloyb

Steel, stainlessSteel, high speedZinc alloys

23 x 10-6

24 x 10-6

24 x 10-6

20 x 10-6

23 x 10-6

19 x 10-6

18 x 10-6

18 x 10-6

18 x 10-6

11 x 10-6

12 x 10-6

12 x 10-6

27 x 10-6

11 x 10-6

17 x 10-6

11 x 10-6

27 x 10-6

12.8 x 10-6

13.3 x 10-6

13.3 x 10-6

11 x 10-6

13 x 10-6

10.6 x 10-6

10.0 x 10-6

10.0 x 10-6

10.0 x 10-6

6.1 x 10-6

6.7 x 10-6

6.7 x 10-6

15 x 10-6

6.1 x 10-6

9.5 x 10-6

6.1 x 10-6

15 x 10-6

PolymersThermoplasticsc

Thermosetsd

Acetal (polyformaldehyde)Nylons (polyamides)Polyethylene, high densityPhenol formaldehydee

Rubber, naturalf

Rubber, nitrileg

Rubber, silicone

(60-100) x 10-6(10-80) x 10-6

90 x 10-6

100 x 10-6

126 x 10-6

(25-40) x 10-6

(80-120) x 10-6

34 x 10-6

57 x 10-6

(33-56) x 10-6

(6-44) x 10-6

50 x 10-6

56 x 10-6

70 x 10-6

(14-22) x 10-6

(44-67) x 10-6

62 x 10-6

103 x 10-6

CeramicsAlumina (Al2O3)

h

Graphite, high strengthSilicon carbide (SiC)Silicon nitride (Si3N4)

5.0 x 10-6

1.4-4.0 x 10-6

4.3 x 10-6

3.2 x 10-6

2.8 x 10-6

0.8-2.2 x 10-6

2.4 x 10-6

1.8 x 10-6

aStructural alloysbCast alloys can be up to 15 x 10-6/(°C)cTypical bearing materialsd25 x 10-6(°C)-1 to 80 x 10-6(°C)-1 when reinforcedeMineral filledfFillers can reduce coefficientsgVaries with compositionh0 to 200°C

Page 13: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

Ejemplo: Esfuerzos Térmicos

1. El conjunto mostrado en la figura consta de una cubierta de aluminio totalmente adherida a un núcleo de acero y no tiene esfuerzos cuando la temperatura es de 20 °C. Considerando solo deformaciones axiales, hallar el esfuerzo en la cubierta de aluminio cuando la temperatura sube a 180ºC.

Datos:

Aluminio EAl =70 GPa, αAl = 23x 10-6°C-1

Acero EAc = 200 GPa, αAc = 11x 10-6°C-1

Page 14: Ajustes a presión Figure 10.9 Vista lateral que muestra la interferencia en un ajuste a presión de un eje hueco con su agujero. Text Reference: Figure.

2. Un bloque de una aleación de aluminio se coloca entre las dos mordazas rigidas de una prensa, las cuales se aprietan ligeramente. La temperatura del ensamble completo se eleva a 250°C en un horno. Las áreas de las secciones transversales son de 65 mm2 para el bloque y de 160 mm2 para los tornillos de acero inoxidable. Hallar esfuerzos en los tornillos y el bloque

Text Reference: Figure 10.11, page 411

Ejemplo: Esfuerzos Térmicos

Aluminio EAl =70 GPa, αAl = 24x 10-6°C-1 Acero inox: EAc = 200 GPa, αAc = 17x 10-6°C-1