Analisis de Velocidad Mediante Los CIR

5
3.5 ANÁLISIS DE LA VELOCIDAD MEDIANTE LOS CIR: Cuando se conocen los centros instantáneos de rotación de un mecanismo resulta inmediato determinar la velocidad de cualquier punto del mismo, sin necesidad de calcular primero las velocidades de otros puntos. Con el método de los CIR, no es necesario calcular la velocidad de un punto que una físicamente dos barras, sino que calculando la velocidad del CIR relativo de dos eslabones podemos considerar que conocemos la velocidad de un punto que pertenece indistintamente a cualquiera de los dos eslabones. Es importante resaltar que el CIR se comporta como si perteneciera simultáneamente a ambos eslabones, por tanto su velocidad debe ser la misma si la obtenemos en base a uno u otro eslabón. Para calcular las velocidades por CIR seguiremos los pasos siguientes: 1.- Identificar los eslabones a los que pertenecen: a) El punto de velocidad conocida. b) El punto de velocidad desconocida. c) El eslabón de referencia o barra fija. 2.- Se hallan los tres CIR relativos correspondientes a las barras, que estarán en línea recta según nos indica el Teorema de Kennedy. 3.- Se calcula la velocidad del CIR relativo de los dos eslabones no fijos, considerándolo como un punto perteneciente a la barra de velocidad conocida 4.- Se considera la velocidad hallada como la de un punto del eslabón cuya velocidad queremos hallar. Conociendo la velocidad de un punto del eslabón (CIR) y su centro de giro podemos encontrar la de cualquier otro punto del mismo. Aplicación de los CIR a un mecanismo de cuatro barras. Aplicación de los CIR a un mecanismo de biela – manivela Puntos en diferentes eslabones. Muy frecuentemente es necesario encontrar la velocidad de un punto en un determinado eslabón de un mecanismo, a partir de la velocidad de otro punto localizado en un

Transcript of Analisis de Velocidad Mediante Los CIR

Page 1: Analisis de Velocidad Mediante Los CIR

3.5 ANÁLISIS DE LA VELOCIDAD MEDIANTE LOS CIR:

Cuando se conocen los centros instantáneos de rotación de un mecanismo resulta inmediato determinar la velocidad de cualquier punto del mismo, sin necesidad de calcular primero las velocidades de otros puntos. Con el método de los CIR, no es necesario calcular la velocidad de un punto que una físicamente dos barras, sino que calculando la velocidad del CIR relativo de dos eslabones podemos considerar que conocemos la velocidad de un punto que pertenece indistintamente a cualquiera de los dos eslabones. Es importante resaltar que el CIR se comporta como si perteneciera simultáneamente a ambos eslabones, por tanto su velocidad debe ser la misma si la obtenemos en base a uno u otro eslabón. Para calcular las velocidades por CIR seguiremos los pasos siguientes:

1.- Identificar los eslabones a los que pertenecen: a) El punto de velocidad conocida. b) El punto de velocidad desconocida. c) El eslabón de referencia o barra fija.2.- Se hallan los tres CIR relativos correspondientes a las barras, que estarán en línea recta según nos indica el Teorema de Kennedy.3.- Se calcula la velocidad del CIR relativo de los dos eslabones no fijos, considerándolo como un punto perteneciente a la barra de velocidad conocida4.- Se considera la velocidad hallada como la de un punto del eslabón cuya velocidad queremos hallar. Conociendo la velocidad de un punto del eslabón (CIR) y su centro de giro podemos encontrar la de cualquier otro punto del mismo. Aplicación de los CIR a un mecanismo de cuatro barras. Aplicación de los CIR a un mecanismo de biela – manivela

 Puntos en diferentes eslabones.

    Muy frecuentemente es necesario encontrar la velocidad de un punto en un determinado eslabón de un mecanismo, a partir de la velocidad de otro punto localizado en un diferente eslabón. Comúnmente se dispone de varios métodos y cada uno de ellos tiene sus ventajas para casos particulares, es muy aconsejable que el estudiante entienda los principios de cada uno de estos métodos, para que utilice el que mas le convenga para un problema en particular, o bien emplee un método para comprobar el otro. Algunos problemas se resuelven mejor combinando estos métodos.    Antes de esbozar los métodos, resulta conveniente clasificar alguno de los centros instantáneos como centros de pivoteo. Estos son los centros relacionados al eslabón fijo 1 y por lo tanto tienen su número en su subscripto. De esta manera, en la fig. 5.3 los centros de pivoteo son O12, O13 y O 14.

  

Page 2: Analisis de Velocidad Mediante Los CIR

a) Método de eslabón –a – eslabón:

    Este es un método de paso por paso, por medio del cual comenzamos con el eslabón donde esta localizado el punto con la velocidad conocida, y derivamos a través de su centro instantáneo con respecto a un eslabón conectado y después continuamos con el eslabón conectado a su centro instantáneo con respecto al siguiente eslabón. Continuando de esta manera, llegamos finalmente al eslabón que contiene el punto cuya velocidad es requerida. En general, es necesario empezar localizando todos los centros de pivoteo y los centros instantáneos de cada eslabón con respecto a su eslabón adjunto.    Para ilustrar el método consideraremos el cuadrilátero articulado de la fig. 5.3 en el cual el eslabón 1 es fijo. Supondremos que la velocidad del punto Q en el eslabón 1 es la requerida. En este ejemplo los eslabones 2 y 4 están conectados por el eslabón 3, y trabajaremos a través de este último desde el 2 al 4.    Primeramente localizamos los centros instantáneos O21 O25, O31 O34 y O41, como se ilustra en la figura.     La velocidad del punto P es conocida y representada por el vector Vp, perpendicular a una línea desde P al centro de pivoteo O21, considerando los dos puntos P y O23 como puntos en el eslabón 2, trazamos la construcción (según el art. 5.1) mostrada y por triángulos semejantes a y b encontramos el vector de velocidad Vo23 para el punto O23.   Por definición de un centro instantáneos, O23 es un punto en el eslabón 3, así como también en el eslabón 2, Siendo un punto en el eslabón 3 gira sobre el centro de pivoteo O31; igualmente como es un punto en el eslabón 2 gira sobre el centro de pivoteo O21. Por lo tanto el vector de velocidad V023 es trasportando (arco c) girando sobre el centro de pivoteo O31 a una línea que pasa sobre O31 y O34. Considerando la posición de O23 girada y el centro O34 como punto en el eslabón 3, efectuamos la construcción (según Art. 5.1) mostrada según los triángulos d y e; empleando O31 como el centro de pivoteo para encontrar el vector de velocidad Vo34 para el punto O34. Ahora O34 y Q, son puntos en el eslabón 4, que giran sobre el centro de pivoteo O41.    De ahí que Vo34 se puede trasporta sobre este centro de pivoteo a la línea O41Q (arco f)     Dibujando los triángulos semejantes g y h, encontramos el vector de velocidad VQ que representa la velocidad requerida para el punto Q. Dicho vector es perpendicular a un línea desde Q hasta el centro de pivoteo O41.    De esta descripción es evidente que : el giro de cualquier eslabón relativo al eslabón fijo ocurre alrededor del centro de pivoteo que contiene el número de ese eslabón y el del eslabón fijo. La velocidad absoluta de cualquier punto sobre un eslabón, es en una

Page 3: Analisis de Velocidad Mediante Los CIR

dirección perpendicular a una línea desde el punto hasta el centro de pivoteo de ese eslabón, y el vértice del triángulo semejante, según la construcción del art. 5.1 siempre es el centro de pivoteo del eslabón considerado.    En este ejemplo los tres eslabones 2, 3 y 4 están conectados por pernos articulados. Las conexiones entre estos eslabones pueden, no obstante, ser de cualquier forma, y el método se pude aplicar en cualquier mecanismo, siempre que los centros instantáneos requeridos están accesibles.

   b) Método directo:

    Cuando un mecanismo tiene muchos eslabones, el método eslabón-eslabón resulta ser muy fastidioso. Muy frecuentemente se puede emplear el método directo para reducir el trabajo que se requiere en tales casos. Tal como lo implica el nombre, vamos directamente desde el eslabón que contiene la velocidad conocida, hasta el eslabón que tiene el punto cuya velocidad es la requerida. Esto puede efectuarse encontrando la velocidad del centro instantáneo que contiene en su subscrito los números de los dos eslabones en cuestión, ya que en este punto los dos eslabones tienen una velocidad común. Por lo tanto solamente se necesitan localizar tres centros instantáneos. Si el eslabón fijo es 1 y los dos eslabones en cuestión son m y n, los centros que deben localizarse son Omn Oml y Onl. Los últimos dos centros son los centros de pivoteo, y los principios del método eslabón-a-eslabón, con referencia a la construcción, se aplica igualmente aquí.

    Por lo anterior, en la Fig. 5.4, que es el mismo cuadrilátero articulado empleado en el ejemplo anterior, la velocidad del punto P en el eslabón 2 es conocida, y se requiere encontrar la velocidad del punto Q en el eslabón 4. Por lo tanto localizamos el centro común O24 y los dos centros de pivoteo O21 y O41.    Los puntos P y O24 son dos puntos sobre el eslabón 2 y por eso giran alrededor del centro de pivoteo O21. Como la velocidad de P es conocida, la velocidad de O24 se puede localizar gráficamente por el método del Art. 5.1 y se designa Vo24. Como el eslabón 2 pivotea alrededor de O21 se traza el triángulo a con un cateto que representa Vp. El triangulo b semejante a a, tendrá un cateto correspondiente representado, como se ha indicado, la velocidad de O24. Por ser un punto en el eslabón 4, O24 tienen la misma velocidad Vo24: por tanto conocemos la velocidad de un punto en 4 podemos encontrar la velocidad de cualquier otro punto, tal como Q. Puesto que el eslabón 4 gira alrededor de O41, construimos el triángulo c, y después el triangulo semejante d. Este vector es girando alrededor de O41 hasta el punto Q, donde se hace perpendicular a un a

Page 4: Analisis de Velocidad Mediante Los CIR

línea desde Q hasta el centro del pivoteo O41. En esta posición el vector representa la velocidad de Q en magnitud y dirección.    La construcción se puede aplicar a cualquier forma de mecanismo siempre y cuando esté disponible el centro instantáneo común a los dos eslabones en los cuales se localizan los puntos; cuando este punto no es accesible se debe emplear algún otro método. En algunos casos la localización de este centro requiere mucho trabajo, y se puede facilitar empleando otro método. Hay que tomar en cuanta que, si uno de los centros de pivoteo se localizan hasta el infinito, todos los puntos en ese eslabón tendrán la misma velocidad en magnitud y dirección. Entonces, si se encuentra la velocidad del centro común y el centro de pivoteo del eslabón del cual se desea conocer la velocidad está en el infinito, no es posible, o necesario, trazar arcos, ya que la velocidad del punto es la misma que la del centro común en magnitud y dirección.