CAPITULO I€¦  · Web view2008-04-19 · Son las cajas que alojan los elementos de medición y...

83
Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica) CAPITULO I CONCEPTOS BÁSICOS 1.1 SISTEMA ELÉCTRICO Conjuntos de elementos pasivos y activos que tienen la función de proporcionar Energía Eléctrica, industrial y domiciliaria y consta de cuatro partes Generación, transmisión, distribución y utilización 1.1.1 SISTEMAS DE GENERACIÓN. Conjunto de equipos encargados de transformar cualquier tipo de Energía en Energía Eléctrica entre los más importantes tenemos: Conceptos Básicos 1

Transcript of CAPITULO I€¦  · Web view2008-04-19 · Son las cajas que alojan los elementos de medición y...

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

CAPITULO I

CONCEPTOS BÁSICOS

1.1 SISTEMA ELÉCTRICO

Conjuntos de elementos pasivos y activos que tienen la función de

proporcionar Energía Eléctrica, industrial y domiciliaria y consta de cuatro partes

Generación, transmisión, distribución y utilización

1.1.1 SISTEMAS DE GENERACIÓN.

Conjunto de equipos encargados de transformar cualquier tipo de Energía

en Energía Eléctrica entre los más importantes tenemos:

Conceptos Básicos 1

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

1.1.1.1 Generación Hidráulica.

Utiliza el agua almacenada en embalses la cual teniendo una ciada

considerable adquiere una velocidad la cual hace girar las turbinas para que esta

pueda generar energía electrica casi gratuita ya que el agua almacenada no

cuesta como los combustibles.

1.1.1.2 Generación Térmica.

El combustible suele ser gas natural, aunque puede emplearse gas LP o

diésel. Sus capacidades van de 265 kW a 50,000 kW; permiten obtener eficiencias

eléctricas del 30% y eficiencias térmicas del 55%; los gases de combustión tienen

una temperatura de 600 °C; ofrecen una alta seguridad de operación; tienen un

bajo costo de inversión; el tiempo de arranque es corto (10 minutos); y requieren

un mínimo de espacio físico.

Conceptos Básicos 2

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

1.1.2 TRANSMISIÓN.

Es el enlace entre las plantas generadoras y los puntos de consumo masivo

cuando las distancias son largas y normalmente se lo realiza en tensiones

elevadas como ser 230 KV, 115KV.

1.1.3 DISTRIBUCIÓN.1.1.3.1 Sistema de Utilización

Conceptos Básicos 3

TRANSMISIÓN

B1 B2

A.T

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Es la red encargada de conducir o transportar la energía eléctrica hasta el

consumidor final, grandes consumidores en Media Tensión (24.9 KV),

consumidores domésticos Baja tensión (380V – 220V).

Sistema Domiciliario.Acometida.

Se denomina así a la instalación comprendida entre la parte de la red de

distribución pública y el equipo de medida, podrán ser aéreas o subterráneas o

ambos sistemas combinados.

Conductor de Acometida.Son los conductores de enlace entre la red de distribución publica y la caja

general de medición, los cuales no deberán pasar a menos de 1 metro de

distancia frente a puertas ventanas balcones.

Poste Intermedio.

Conceptos Básicos 4

B.T

B5

T: A.T/M.TB3 B4

T: M.T/B.T

M.T

DISTRIBUCIÓN

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

El poste intermedio es necesario para elevar la altura del conductor de

acometida o evitar cruces en propiedades vecinas.

Canalización de Acometida.Comprende el tramo desde la llegada del conductor aéreo al punto de

sujeción hasta la caja de medida.

Caja de Medición.Son las cajas que alojan los elementos de medición y protección principal

de las instalaciones eléctricas.

Para la protección principal de instalaciones eléctricas se aceptaran

únicamente interruptores termo magnéticos de caja moldeada y dependiendo del

tipo de alimentación los interruptores termo magnéticos deberán ser del tipo:

Unipolar para sistemas de alimentación............................ Una fase

Bipolar para sistemas de alimentación............................... Dos fases

Tripolar para un sistema de alimentación........................... tres fases

SISTEMA DE UTILIZACIÓN

Conceptos Básicos 5

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

1. Poste de red publica

2. Conductores de acometida

3. Bastón de llegada (canalización de Acometida)

4. Caja metálica de medición

5. Bastón de salida

6. Machón para el medidor

7. Conductores al interior en forma aérea

8. Tablero de distribución interna

1.1.4 Transporte y Distribución de Energía Eléctrica Las actividades del Área de Transmisión y Distribución de Energía están

dirigidas a satisfacer las necesidades de interconexión de sistemas eléctricos para

el suministro o consumo de energía.

Conceptos Básicos 6

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

1.2 INTRODUCCION A LA ELECTROTECNIA.

La electrotecnia estudia las leyes de los fenómenos eléctricos y

aplicaciones técnicas de la electricidad con fines industriales y científicos.

La finalidad de la Electrotecnia es de proporcionar herramientas relevantes

que propicien un desarrollo posterior, proporcionándole al alumno posibilidades

en múltiples opciones de formación electrotecnia más especializada, lo que

confiere a esta materia un elevado valor propedéutico. En este sentido cumple el

doble propósito de servir como formación de base, tanto para aquellos alumnos

que decidan orientar su vida profesional por el camino de los ciclos formativos,

como para los que elijan la vía universitaria encaminada a determinadas

ingenierías. El primer aspecto conduce a una formación científica que justifique los

fenómenos eléctricos, y el segundo a una formación más orientada a técnicas y

procedimientos. El carácter de ciencia aplicada le confiere un valor formativo

relevante, al integrar y poner en función conocimientos procedentes de disciplinas

científicas de naturaleza mas abstracta y especulativa.

También ejerce un papel de catalizador del tono científico técnico que le es

propio, profundizando y sistematizando aprendizajes afines procedentes de etapas

educativas anteriores. Conceptos Básicos 7

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

El campo disciplinar abarca el estudio de los fenómenos eléctricos y

electromagnéticos, desde el punto de vista de su utilidad practica, las técnicas de

diseño y construcción de dispositivos eléctricos característicos, ya sean circuitos,

máquinas o sistemas complejos, y las técnicas de calculo y medida de magnitudes

en ellos.

Esta materia se configura a partir de tres grandes campos del conocimiento y la

experiencia:

1. Los conceptos y leyes científicas que explican los fenómenos físicos que

tienen lugar en los dispositivos eléctricos, (como ser: Resistencias y

condensadores, bobinas)

2. Los elementos con los que se componen circuitos y aparatos eléctricos y

su disposición y conexiones características.

3. Las técnicas de análisis, cálculo y predicción del comportamiento de

circuitos y dispositivos eléctricos.

1.3 DEFINICIONES. 1.- Corriente eléctrica

2.- Voltaje

3.- Resistencia

1.3.1 CORRIENTE ELECTRICA.El concepto de carga eléctrica es la base para la descripción de todos los

fenómenos eléctricos en seguida se revisan algunas características de cargas

eléctricas.

La carga es bipolar lo que significa que los efectos eléctricos se describen en

términos de carga positivos y negativos.

Conceptos Básicos 8

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

FIGURA 1 Todos los cuerpos existentes en la naturaleza son eléctricamente neutros

mientras no se rompa el equilibrio que existe entre el número de electrones y de

protones que poseen sus átomos. Los cuerpos en la naturaleza tienden a estar

neutros, es decir, tienden a descargarse. Cuando un conductor (C) une dos

cuerpos A y B (ver figura 1) , el cuerpo A con exceso de electrones y el cuerpo B

con déficit de electrones, los electrones se distribuyen uniformemente entre ambos

cuerpos. El movimiento de los electrones a través de (C) se conoce como

Corriente Eléctrica.

La fuerza que impulsa a los electrones a moverse se debe a la diferencia de

potencial o tensión que existe entre A y B. Si la tensión es muy alta, los electrones

pueden pasar de un cuerpo al otro a través del aire, por ejemplo, el rayo. En

cambio, si la tensión es baja, los electrones necesitan ciertos materiales, llamados

conductores, para pasar de un cuerpo a otro. Los conductores más importantes

son los metales. La Tierra es un inmenso conductor que, dado que tiene tantos

átomos, puede ganar o perder electrones sin electrizarse. Por esto, si un cuerpo

electrizado se conecta a tierra, se produce una corriente eléctrica, hasta que el

cuerpo se descarga.

Un cuerpo neutro tiene potencial eléctrico nulo

Un cuerpo con carga positiva (déficit de electrones) tiene potencial positivo

Un cuerpo con carga negativa (exceso de electrones) tiene potencial

negativo

En un circuito los electrones circulan desde el polo negativo al polo positivo, este

es el sentido de la corriente, la que recibe el nombre de corriente real. Pero los

Conceptos Básicos 9

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica) técnicos usan una corriente convencional, donde el sentido del movimiento es el

contrario de la corriente real, es decir, el sentido del polo positivo al polo negativo.

FIGURA 1.1 CORRIENTE ELECTRICA En general, la intensidad de la corriente es una magnitud variable de modo

que la definición anterior se puede expresar matemáticamente de la siguiente

manera, si tomamos porciones muy pequeñas de tiempo dt, y observamos la

variación que experimenta la cantidad de electricidad dq, en ese tiempo.

en donde

i = la corriente en amperes,

q = la carga en coulombs,

t = el tiempo en segundos

Por supuesto que si la intensidad, I, es constante la expresión anterior se puede

poner como

UNIDADES DE CORRIENTE ELECTRICA:

La unidad de corriente eléctrica es el amperio (A) en honor a Andre Ampere, y

para intensidades más pequeñas se usan los submúltiplos:

1 miliamperio = 1 mA = 0,001 A = 1x10 – 3 A

Conceptos Básicos 10

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

1 microampere = 0,000001 A = 1x10– 6 A

Coulomb (C). Establece que un electrón tiene una carga negativa de 1.6021*10-19

coulomb. Dicho de otra manera un coulomb es el conjunto de cargas de

aproximadamente 6.24*1018 electrones.

1.3.2 VOLTAJE, ENERGIA Y POTENCIA.

El voltaje entre 2 puntos es el costo en energía (trabajo realizado) requerido

para mover una unidad de carga desde el punto más negativo (potencial bajo) al

más positivo (potencial alto).

En caso eléctrico el flujo de corriente a través de un cable es proporcional a

la diferencia de potencial entre los extremos del cable.

Figura 1.2

Modelo de Agua:

– Torre de agua que es mantenida llena con el fin de entregar una

presión constante en la base.

– Presión depende de altura de la torre.

– Agua retorna a presión cero

Conceptos Básicos 11

VA VB

BA VVV

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

• En modelo de agua, el equivalente del voltaje es la presión del agua.

“En puntos de igual presión no hay flujo de agua. El flujo de agua entre 2 puntos

dependerá de la diferencia de presión entre ambos”.

• La unidad del voltaje es el Volt (V). (Nota: dependiendo del contexto V =

Volt)

La carga en un conductor, ejemplificados por electrones libres que puedan

moverse de manera aleatoria. Sin embargo si queremos un movimiento ordenado

de su parte, como es el caso de la corriente eléctrica, debemos aplicar una fuerza

externa llamada fuerza electromotriz (Fem.) Para de ese modo ejercer trabajo

sobre la carga. Anteriormente definimos el voltaje a través de un elemento como el

trabajo realizado para mover una carga unitaria (+ 1 C) a través del elemento de

una terminal a la otra.

El voltaje a través de un elemento estará designado por dos indicadores: un

signo de mas o menos en el que se establece la dirección de referencia del

voltaje que aparece por un elemento en la dirección de referencia especificado.

En la figura 1.3(a) vemos un voltaje o (diferencia de potencial) de valor V0 Volts que pasa por un elemento, medido con un potencial mayor del lado izquierdo del

elemento y un potencial menor del lado derecho. Sí V0 ≥ 0, el lado izquierdo será

de mayor potencial, si V0 ≤ 0, el lado derecho será de mayor potencial.

En la figura 1.3 (b) el lado derecho del elemento es +25 V mayor que el izquierdo. Conceptos Básicos 12

Modelo de Agua

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura 1.3 Especificaciones del valor de voltaje y la dirección de referencia

Como ejemplo: En la figura 1.4(a) la terminal A es + 5 V sobre la terminal

B, y en 1.4(b) la terminal B es –5 V sobre A.

a) b)Figura 1.4 Representaciones equivalentes de voltaje

Por lo tanta en la figura 1.4(a) en general VAB = - VBA o VAB = 5 V. Y VBA= - 5 V.

POTENCIA Y ENERGIA.La potencia es la capacidad para realizar o efectuar un trabajo.

Es la relación de la energía absorbida o entregada por unidad de tiempo,

matemáticamente la energía por unidad de tiempo se expresa en forma de una derivada.

Conceptos Básicos 13

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

La potencia asociada con el flujo de carga se obtiene directamente de la

definición de voltaje y corriente.

La ecuación anterior muestra que la potencia asociada con un elemento

básico de circuito es simplemente el producto de la corriente en el elemento por el

voltaje a través de él. Por tanto, la potencia es una cantidad asociada con un par

de terminales, y debemos ser capaces de determinar con base en nuestros

cálculos si se esta entregando potencia al par de terminales, o se esta extrayendo

de ellas. Esta información se obtiene de la aplicación e interpretación correcta de

la convención pasiva de signos.

Si usamos dicha convención, la ecuación anterior es correcta si la dirección

de referencia para la corriente va en la dirección de referencia para la caída de

voltaje a través de las terminales. De lo contrario la ecuación debe reescribirse

con un signo menos.

Si la potencia es positiva (esto es si P es mayor a cero), se esta entregando

potencia al circuito. Si la potencia es negativa (esto es si P es menor que cero), se

esta extrayendo potencia del circuito.

Por ejemplo supongamos que se han seleccionado las referencias de

polaridad como se muestra en la figura 1.5 además considérese que nuestros

cálculos para la corriente y el voltaje produjeron los siguientes resultados

numéricos:

Conceptos Básicos 14

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura 1.5Entonces la potencia asociada con el par terminal 1,2 es

Así que el circuito en las terminales 1,2 esta absorbiendo 40W.

Ejemplo: Al transferir carga a través de un elemento se efectúa un trabajo

o se esta suministrando energía, para saber si la energía esta siendo suministrada

al elemento o por el elemento al resto del circuito, debemos conocer no solo la

polaridad del voltaje a través del elemento si no también la dirección de la

corriente a través del elemento.

El elemento esta energizado cuando una corriente positiva entra por la

terminal positiva, por lo tanto esta entregando o suministrando energía al

elemento.

El elemento esta entregando energía al circuito externo cuando una

corriente positiva sale por la terminal positiva.

a) b) c) d)Figura 1.6 Diferentes relaciones Voltaje - Corriente

Conceptos Básicos 15

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

La figura 1.6(a) el elemento esta absorbiendo energía. Una corriente

positiva entra por la terminal positiva ese es el caso también en la figura

1.6(b).

En la figura 1.6(c) y (d), una corriente positiva entra por la terminal negativa

por tanto el elemento esta entregando energía en ambos casos.

1.4 ELEMENTOS DE CIRCUITOS ELECTRICOS 1.4.1 RESISTENCIAS

Resistencia (R) denota la oposición que presenta un determinado material al paso de carga (electrones).

Las resistencias dependen del tipo de material (su composición).

La resistencia se mide en Ohm (Ώ)y existen resistencias con valores entre

1Ώ y 10 MΏ

Resistencia con código Símbolo(R)

Figura 1.7

1.4.2 CARACTERÍSTICAS

Las características más importantes de las resistencias, también llamadas

resistores, son:

Valor nominal: Es el valor en Ohmios que posee; está impreso en la propia

resistencia en cifras o por medio del código de colores.

Tolerancia: Es el error máximo con el que se fabrica la resistencia. Para

comprenderlo vamos a ver un ejemplo: Una resistencia de 10 ohm. y el 5%, tiene

un valor garantizado entre 10-5% y 10+ 5%, teniendo en cuenta que el 5% de 10

es 0,5 ohm., quiere decir que estará entre 9,5 y 10,5 ohm.. Conceptos Básicos 16

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

1ra 2da 3ra 4ta

Significado de cada banda

La primera banda: valor base

Segunda banda: valor base

Tercera banda:

valor multiplicador

Cuarta banda: Tolerancia en porcentaje

Las dos primeras bandas dan una idea del valor base de la resistencia y

la tercera banda nos indica por cuanto hay que multiplicar el valor base

anterior para obtener el verdadero valor de la resistencia. La cuarta y última banda

nos da la tolerancia.: Dorado 5%, Plateado 10%, sin color 20%.

Código de colores para las resistencias

Color Valor base Multiplicador

Negro 0 x 1 Marrón 1 x 10 Rojo 2 x 100 Naranja 3 x 1,000 Amarillo 4 x 10,000 Verde 5 x 100,000

Conceptos Básicos 17

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Azul 6 x 1,000,000 Violeta 7 x 10,000,000

Gris 8 x 100,000,000

Blanco 9

Potencia máxima: Es la máximo cantidad de calor que puede generar una

resistencia sin antes quemarse.

1.4.3 TIPOS DE RESISTENCIAS

Hay tres tipos de resistencias: fijas, variables y especiales.

1) Las resistencias fijas son aquellas en las que el valor en ohmios que posee es

fijo y se define al fabricarlas.

Las resistencias fijas se pueden clasificar en resistencias de usos

generales, y en resistencias de alta estabilidad.

Las resistencias de usos generales se fabrican utilizando una mezcla de

carbón, mineral en polvo y resina aglomerante; a éstas se las llama resistencias

de composición, y sus características más importantes son: pequeño tamaño,

soportan hasta 3 W de potencia máxima, tolerancias altas (5%, 10% y 20%),

amplio rango de valores y mala estabilidad de temperatura.

Las resistencias de alta estabilidad se clasifican a su vez en:

· Resistencias pirolíticas: se fabrican depositando una película de carbón

sobre un soporte cerámico, y seguidamente se raspa dicha capa de forma que lo

que queda es una especie de espiral de carbón sobre el soporte cerámico. Sus

características más importantes son: pequeño tamaño, hasta 2 W de potencia

máxima, tolerancias del 1% y 2% y coeficiente de temperatura medio.

· Resistencias de hilo bobinado: se construyen con un hilo metálico de

constantán o manganita arrollado sobre un tubo de porcelana. Sus características

Conceptos Básicos 18

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica) más importantes son: tamaño medio o grande, hasta 400 W de potencia máxima,

baja tolerancia 0,25 % y coeficiente de baja temperatura .

· Resistencias de película metálica: consisten en una película metálica a

la que se va eliminando parte de esta capa dejando una forma similar a un hilo

muy largo. Las características más importantes son: tamaño medio, pequeños

valores de resistencia eléctrica, hasta 6 W de potencia máxima, tolerancias de 1%,

2% y 5% y bajo coeficiente de temperatura.

En las resistencias metálicas hay que tener en cuenta que son inductivas y

por tanto pueden variar el comportamiento a determinadas frecuencias.

2) Resistencias variables: son resistencias sobre las que se desliza un contacto

móvil, variándose el valor, sencillamente, desplazando dicho contacto. Las hay de

grafito y bobinadas, y a su vez se dividen en dos grupos según su utilización que

son las denominadas resistencias ajustables, que se utilizan para ajustar un valor

y no se modifican hasta otro ajuste, y los potenciómetros donde el uso es

corriente. En la figura 1.8 se representa el símbolo de las resistencias ajustables y

variables.

Figura 18. Resistencias Ajustables Resistencias Variables

3) Resistencias especiales: son aquellas en las que el valor óhmico varía en

función de una magnitud física. Las más usuales son:

PTC (Positive Temperature Coefficien = Coeficiente Positivo con la

Temperatura); aumenta el valor óhmico al aumentar la temperatura de ésta.

NTC (Negative Temperature Coefficient = Coeficiente Negativo con la

Temperatura) : disminuye el valor ohmico al aumentar la temperatura.

Conceptos Básicos 19

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

LDR (Light Dependent Resistors = Resistencias Dependientes de la Luz) :

disminuye el valor óhmico al aumentar la luz que incide sobre ella.

VDR (Voltage Dependent Resistors = Resistencias Dependientes de la

Tensión) : disminuye el valor óhmico al aumentar el voltaje eléctrico entre

sus extremos.

La figura 1.9 refleja los símbolos eléctricos, y la figura 1.10, algunos modelos.

Figura 1.9 Figura 1.10

1.5 CONDUCTANCIA.

La propiedad de los materiales inversa a la resistencia, la llamamos

conductancia.

La conductancia representa la facilidad que ofrecen los conductores al paso de la

corriente Eléctrica.

La conductancia G tiene como unidad el mho “ ” y como magnitud

medible se expresa:

1.6 BOBINA O INDUCTOR

1.6.1 DEFINICIÓN.

Conceptos Básicos 20

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Una bobina es un elemento de circuito que consiste en un alambre

conductor usualmente en forma de rollo o carrete. En la figura 1.11 se muestran

dos bobinas típicas y sus símbolos eléctricos. Las bobinas se suelen caracterizar

según el tipo de núcleo en el que están enrollados. Por ejemplo, el material del

núcleo puede ser aire o cualquier otro material no magnético, hiero o ferrita. Las

bobinas hechos con aire o con materiales no magnéticos se usan ampliamente en

circuitos de radio, televisión y filtros. Las bobinas con núcleo de ferrita se utilizan

ampliamente en aplicaciones de alta frecuencia. Note que , en contraste con el

núcleo magnético que se confina el flujo (como se muestra en la figura 1.11b), las

líneas de flujo para bobinas no magnéticas se extienden mas allá de la misma

bobina, como se ilustra en la figura 1.11a.

La bobina como la resistencia y el capacitor es un elemento pasivo. La polaridad

del voltaje a través de la bobina se muestra en la figura 1.11.

Símbolo de la bobina

Figura 1.11 Dos bobina y sus símbolos eléctricos

Conceptos Básicos 21

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

figura 1.12 Algunas bobinas típicas

1.7 CONDENSADORES – CAPACITORES

1.7.1 DEFINICIÓN.

Un capacitor es un elemento que consiste en dos superficies

conductoras separadas por un material no conductor, o dieléctrico. Un

capacitor simplificado y su símbolo se muestra en la figura 1.13.

Figura 1.13 capacitor y su símbolo eléctrico

Conceptos Básicos 22

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica) Hay muchas formas diferentes de capacitores y pueden clasificarse por el tipo de

material dieléctrico que se usa entre las placas conductoras, cada tipo tiene

características que lo hacen mas apropiado en aplicaciones particulares.

Para aplicaciones generales en circuitos electrónicos (por ejemplo,

acoplamiento entre etapas de amplificación), el material eléctrico puede ser aire,

vacío, papel impregnado con aceite o con cera mylar, polietileno, mica, vidrio o

cerámica.

Los capacitores con dieléctricos de cerámica construidos con titanatos de

bario tienen una razón de capacitancia a volumen grande debido a su alta

constante dieléctrica. Los capacitores con dieléctricos de mica, vidrio y

cerámica operan satisfactoriamente a altas frecuencias.

Los capacitores electrolíticos de aluminio, que constan de un par de placas

de aluminio separados por un electrolito pastoso de bórax humedecido pueden

proporcionar valores de capacitancia altos en pequeños volúmenes, se suelen

utilizar en filtrado , desviación y acoplamiento, y en aplicaciones de suministro de

potencia y arranque de motores.

La capacitancia se mide en couloms por voltio faradio, los condensadores

pueden ser fijos o variables y típicamente van de miles de microfaradios (μF ) a

unos cuantos picofaradios (pF).

Conceptos Básicos 23

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura 1.14 Algunos capacitores típicos

Nota: Existen condensadores electrolíticos de gran valor que en su mayoría

tienen polaridad, esto quiere decir que tiene una terminal positivo y una terminal

negativo.

Símbolo condensador(no polarizado)

Símbolo condensador electrolítico (polarizado)

1.8 FUENTES INDEPENDIENTES.

Una fuente de voltaje independiente es una unidad que genera o produce

fuerza electromotriz que consta de dos terminales que mantiene un voltaje

especifico entre sus terminales a pesar de la corriente a través de él. El símbolo

general para una fuente independiente, un circulo se muestra en la figura

1.15a.como lo indica la figura, la terminal A es volts positivo con respecto a la

terminal B. La palabra positiva puede ser algo confusa. Lo que se quiere decir en

este caso es que es una referencia positiva en la terminal A. El símbolo

normalmente se emplea para voltajes que varían en el tiempo. Sin embargo, si el

voltaje no varia con el tiempo (es decir, es constante), se utiliza algunas veces el

símbolo que se muestra en la figura 1.15b. este símbolo que se usa para

representar una batería, ilustra que la terminal A es V volts positiva con respecto a

la terminal B, donde la línea larga en la parte superior y la línea corta en la parte

inferior indican las terminales positiva y negativa, respectivamente, y así la

polaridad del elemento.

Conceptos Básicos 24

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

En contraste con la fuente de voltaje independiente, la fuente de corriente

independiente es un elemento de dos terminales que mantiene una corriente

especifica a pesar del voltaje a través de sus terminales. El símbolo general para

una fuente independiente de corriente se muestra en la figura 1.15c, donde es

la corriente especifica y la flecha indica la dirección positiva del flujo de corriente.

a) b) c)

Figura 1.15

Símbolos para a) fuente independiente de voltaje; b)Fuente de voltaje constante; c) Fuente de corriente independiente.

BIBLIOGRAFÍA:Análisis Básico de Circuitos en ingeniería.................J. David IrwinAnálisis Básico de circuitos eléctricos........................David E. Johnson John L. Hilburn Johnny R. Johnson Peter D. Scott

WWW.WIND POWER.ORG ........................................ Asociación danesa de la Industria

Conceptos Básicos 25

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

CAPITULO II

CIRCUITOS RESISTIVOS

2.1 CONCEPTOS Y ELEMENTOS DE UN CIRCUITO.

Conceptos Básicos 26

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Desde el punto de vista energético, los elementos que conforman un

circuito se clasifican en pasivos y activos.

2.1.1 Elemento Pasivo.El elemento pasivo es aquél que solo recibe la energía eléctrica y la

transforma en otra forma de energía, como térmica, magnética, ionización

(electrólisis), potencial, etc. Debido al cambio de forma de la energía, existe una

caída de potencial (diferencia de potencial) en cada elemento. Entre estos

elementos se encuentran: las resistencias condensadores o capacitores,

solenoides o bobinas, transformadores, bombillos de filamento y de gas, etc.

2.1.2 Elemento Activo.

Es el que produce una transformación permanente de la energía,

generando entre los terminales del elemento una diferencia de potencial (ddp),

voltaje o tensión, la cual se utiliza para suministrar energía eléctrica a un elemento

externo (pasivo). Los elementos activos son denominados generalmente fuente de

fuerza electromotriz, fuente de voltaje o tensión. Si mantiene la diferencia de

potencial constante (no varia en el tiempo), se considera una fuente de voltaje

continuo, Su símbolo es:

Figura 2.0 Fuente de voltaje Continuo

Siendo de signo positivo (+) la terminal que se encuentra a mayor potencial.

2.2 CIRCUITO ELECTRICO.

Conceptos Básicos 27

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Conjunto de elementos pasivos, activos o ambos, unidos entre si, a través

de los cuales circula una corriente cuando existe una fuente de tensión en el

circuito.

Las propiedades de un elemento del circuito se caracterizan en función de

dos cantidades o magnitudes físicas básicas e importantes: la diferencia de

potencial V y la intensidad de corriente eléctrica.

2.3 CIRCUITO CON RESISTENCIA EN SERIE.

Cuando dos o mas resistencias se conectan una detrás de la otra dentro de

un circuito decimos que están asociados en serie como ya se especifico en

capitulo I.

Figura 2.1

Conexión en Serie Considerar dos (o mas) resistencias conectadas como

muestra la figura2.1. La diferencia de potencial entre los puntos R1, R2 y R3 se

puede escribir como:

Como la corriente que circula por R1, R2 y R3 es la misma por estar

conectados en serie, entonces la diferencia de potencial en cada resistencia será:

Conceptos Básicos 28

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Por lo tanto,

2.4 CIRCUITO CON RESISTENCIA EN PARALELO.

Si la conexión es tal que sus extremos están unidos entre si a los mismos

puntos hablamos de asociación en paralelo, como se muestra en la figura 2.2.

Figura 2.2

Conexión en Paralelo En este caso, la diferencia de potencial entre los

extremos de ambas resistencias es la misma, V.

Por tanto las corrientes que circulan por cada resistencia serán distintas, y se

puede escribir como

Conceptos Básicos 29

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

2.5 LEY DE OHM.La ley de Ohm establece que el voltaje a través de una resistencia es

directamente proporcional a la corriente que fluye por la resistencia.

El símbolo de circuitos de la resistencia se muestra en la figura 2.3. para el

elemento la corriente I y el voltaje V. Donde la flecha indica la dirección de

referencia de la corriente que entra y el signo positivo al final de la dirección de

referencia del voltaje la Ley de Ohm es

Figura 2.3 Símbolo del circuito para la resistencia

Donde R≥0 es la resistencia en Ohms.

El símbolo utilizado para representar el Ohm es la letra griega mayúscula

omega (Ω) puesto que por la anterior ecuación despejando la resistencia en

función del voltaje y la corriente obtendríamos la Ley de Ohm de la Forma:

También en forma dimensional.

Conceptos Básicos 30

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Al igual que en el caso anterior, si despejamos la corriente en

función del voltaje y la resistencia, obtendríamos la Ley de Ohm de la

forma:

Para recordar las tres expresiones de la Ley de Ohm nos ayudamos

del siguiente triángulo que tiene mucha similitud con las fórmulas

analizadas anteriormente.

V = I * R

I = V / R

R = V / I

Ejemplo 1:En un circuito con una fuente de tensión de una batería de 12 voltio y una

resistencia de 6 ohms, podemos establecer una relación entre la tensión de la

batería, la resistencia y la corriente I que entrega la batería, esta corriente es la

que circula a través de la resistencia.

Figura 2.4

Conceptos Básicos 31

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Entonces la corriente que circula en nuestro circuito es:

De igual manera el voltaje que se esta entregando al circuito es: V =2A*6; V =12V

Entonces si conocemos la corriente y el voltaje obtendríamos que:

2.6 APLICACIÓN DE LA LEY DE OHM A CIRCUITOS CON RESISTENCIAS EN SERIE.

Antes de continuar recordaremos el uso de cierta nomenclatura.

2.6.1 NODO.

La unión de tres o más ramas se denomina Nodo o Vértice. Usualmente se

escoge un nodo como el nodo de referencia, que por lo general es el nodo al que

están conectadas una mayor cantidad de ramas. La grafica de la figura (2.6) tiene

cuatro nodos, a la unión de dos ramas se le denomina Nodo simple.

Figura 2.6

2.6.2 MALLA.

Conceptos Básicos 32

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica) Se define una malla como un lazo que no contiene ningún otro lazo dentro de él.

Miremos el circuito de figura 2.6, tenemos dos resistencias una tras la otra,

configuración denominada serie y es la más simple de analizar.

Figura 2.6

Analizando el circuito podemos darnos cuenta que existe una malla, por lo

tanto la corriente que circula por ambas resistencias es la misma, pero la tensión

Vr1 y Vr2 que existe sobre ellas es distinta.

Si no sabemos el valor de estas tensiones las podríamos calcular mediante

la ley de ohm diciendo que V = I * R, pero nos hallamos en el problema en que

tampoco sabemos la corriente. Para calcular la corriente tenemos que hacer I = V /

R, donde R es la suma de las dos resistencias por estar en serie. Teniendo el

valor de la tensión podemos calcular la corriente que circula por las dos

resistencias.

Entonces podemos imaginar un circuito con sólo una resistencia que

sea igual a 200Ώ. Aplicando la ley de Ohm encontramos una corriente de 0,05A.

Ahora que sabemos la corriente Itotal que circula por el circuito, podemos

ver que tensión cae en cada resistencia.

En este caso en cada resistencia cae 5 Volts. Entonces podemos decir que

un circuito con resistencias en serie es un divisor de tensión.

Ejemplo:

Conceptos Básicos 33

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Se tiene el siguiente circuito eléctrico se desea calcular la corriente total que

entrega la fuente al circuito y las tensiones en cada resistencia.

Figura 2.7 Donde R1= 10 Ώ, R2= 50 Ώ, R3= 150 Ώ, R4= 200 Ώ

2.7 APLICACIÓN DE LA LEY DE OHM A CIRCUITOS CON RESISTENCIAS EN PARALELO.

Para su aplicación adecuada recurriremos al siguiente ejemplo:

Conceptos Básicos 34

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura 2.8 Donde R1= 100 Ώ, R2= 10 Ώ

Ahora tenemos dos resistencias, pero uno a lado de otro. Están en paralelo.

En este tipo de circuito donde encontramos dos resistencias en paralelo, la

corriente total se encuentra con dos caminos, la mayor corriente circulara por la

menor resistencia.

Para demostrar dicha afirmación calculamos las corrientes que fluyen por

cada rama I1 e I2. Sabiendo que la tensión sobre cada resistencia es de 10V.

Por lo tanto con los cálculos realizados podemos demostrar que a mayor

resistencia menor cantidad de corriente fluirá a través de ella, y a menor

resistencia mayor cantidad de corriente.

Conceptos Básicos 35

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Dos o más resistencias que están en paralelo (están sus bornes unidos en un nodo) son un divisor de corriente, ya que la corriente total se dividen en

las dos: ramas

Como sabemos que:

Ejemplo:Para el circuito de la figura 2.9 calcular:

a) La resistencia equivalente Requi

b) Las intensidades parciales I1,I2 e I3.

c) Las potencias P1, P2 y P3 disipadas en cada resistencia.

d) La potencia total PT.

Conceptos Básicos 36

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura2.9 Donde R1= 30 Ώ, R2= 60 Ώ, R3= 20 Ώ

Solución:

a) La resistencia equivalente es.

b) Las intensidades parciales valen.

Se puede comprobar que la intensidad total es igual a la suma de las

intensidades parciales.

Conceptos Básicos 37

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

c) La potencia en cada resistencia es.

d) La potencia disipada total es igual a la suma de todas las potencias disipadas parcialmente

Que debe coincidir con la potencia suministrada por el generador.

2.8 LEYES DE KIRCHHOFF.Estas leyes son validas para circuitos que contienen elementos de todo tipo:

resistencias, inductores, capacitores, fuentes y otros. Estas leyes son las leyes de

voltajes de Kirchhoff y la ley de corrientes de Kirchhoff.

2.8.1 LEY DE VOLTAJES DE KIRCHHOFF (LVK).La cual postula:

La suma algebraica de los voltajes alrededor de cualquier trayectoria cerrada es igual a cero.

Para ilustrar lo anterior, apliquemos este postulado a la trayectoria cerrada

abcda de la figura 2.10, donde

Conceptos Básicos 38

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura 2.10 Voltajes alrededor de una trayectoria cerrada

Donde el signo algebraico de cada voltaje se ha considerado positivo al ir de + a – (de mayor a menor potencial) y negativo de ir de – a + (de menor a mayor

potencial) al atravesar el elemento.

La forma final de la LVK que se representa cuando son encontrados los

voltajes de + a – en el la dirección del movimiento alrededor de la trayectoria

cerrada son sumados en un lado de la ecuación y de – a + en el otro lado como en

la malla de la figura 2.10, nos da:

La suma de las caídas de voltaje es igual a la suma de las elevaciones de voltaje a lo largo

de una trayectoria cerrada.

En general la LVK puede ser expresado de forma matemática como:

Donde Vn es el n-ésimo voltaje bajo (o alto) en una malla que contiene N

voltajes

Ejemplo:

Para el circuito de la figura 2.11 demostrar que la suma algebraica de las caídas de tensión a lo largo de toda la trayectoria cerrada es cero.

Conceptos Básicos 39

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura 2.11 Ejemplo de LVK

2.8.2 LEY DE CORRIENTES DE KIRCHHOFF (LCK).La ley de corrientes de Kirchhoff postula que:

Conceptos Básicos 40

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

La suma algebraica de las corrientes que entran por cualquier nodo son cero.

Por ejemplo las corrientes que entran al nodo de la figura 2.12 son i1, i2, -i3 e

i4(ya que i3 sale , entonces -i3 entra). Por lo tanto, al aplicar LCK para este caso se

tiene.

Figura 2.12 Corrientes fluyendo hacia un nodo

Analizando la ecuación anterior donde las corriente que tienen su dirección

de referencia que entra al nodo son reunidas en un lado y las que salen del nodo

en el otro lado. Todos los signos de menos desaparecen, y obtenemos la siguiente

ecuación.

Por lo tanto la LCK es igual a la suma de las corrientes que entran a cualquier nodo es igual a la suma de las corrientes que salen del mismo.

En general la LCK puede ser expresado de forma matemática como:

Conceptos Básicos 41

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Ejemplo:Sume las corrientes en cada nodo del circuito que se muestra en la figura

2.13. Observe que no hay punto de conexión en el centro del diagrama, en donde

la rama de 4Ώ, cruza la rama que contiene la fuente de corriente ideal Ia.

Figura 2.13 Ejemplo de LCK

Resolviendo las ecuaciones para las corrientes con esos parámetros se pueden

calcular las caídas de tensión en cada resistencia y la potencia que absorbe

cada resistencia independientemente.

Como un ejemplo de la LCK, encontremos la corriente i de la figura 2.14

sumando las corrientes que entran al nodo, obtenemos.

Conceptos Básicos 42

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura 2.14 Ejemplo de LCK

2.9 CIRCUITOS DE UNA SOLA MALLA2.9.1 DIVISOR DE TENSIÓN.

Figura 2.15Dos resistencias conectadas como se muestra en la figura 2.15 (en serie) a

una fuente de voltaje V0 conforman un divisor de voltaje, ya que la caída de voltaje

V0 se reparte proporcionalmente en las resistencias. Esto quiere decir (para el

circuito de la figura 2.15) que:

Donde:

Conceptos Básicos 43

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Ejemplo:Para el circuito de la figura 2.16 calcular.

a. El voltaje que se aplica a la resistencia de 10Ώ.

b. El voltaje que se aplica a las resistencias en paralelo.

Figura 2.16Ejemplo de Divisor de voltajes

2.10 CIRCUITO DE UN PAR DE NODOS2.10.1 DIVISOR DE CORRIENTES.

Conceptos Básicos 44

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Dos resistencias conectados en paralelo (Figura 2.17) a una fuente o fuerza

electromotriz forman un divisor de corrientes, ya que en el nodo se divide la

corriente eléctrica según los valores de las resistencias. Así, la i0 va a ser igual

(según la ley de los nodos de kirchhoff) a la suma de las corrientes eléctricas que

circulan por R1 y R2, es decir: i0 = i1 + i2 en el nodo A, siendo.

En el caso que las dos resistencias sean iguales las ecuaciones quedaran de

la siguiente manera.

Figura 2.17 Circuito simple en paralelo

Ejemplo:Para el circuito de la figura calcular.

a. La resistencia equivalente del circuito

b. La corriente que entrega la fuente de tensión de 120V

c. Las corrientes I1, I2

Conceptos Básicos 45

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

d. Las potencias parciales en cada resistencia

e. La potencia total.

fig 2.18

Conceptos Básicos 46

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

BIBLIOGRAFÍA:Análisis Básico de Circuitos en ingeniería................... J. David IrwinAnálisis Básico de circuitos eléctricos........................ David E. Johnson John L. Hilburn Johnny R. Johnson Peter D. Scott

Conceptos Básicos 47

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Circuitos Eléctricos...................................................... James W. Nilson Susan A. RiedelWWW.WIND POWER.org........................................ Asociación danesa de

la industria

Conceptos Básicos 48

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

CAPITULO III

METODOS PARA RESOLVER

CIRCUITOS ELÉCTRICOS

3.1 INTRODUCCION AL METODO DE VOLTAJES DEL NODO.

Presentaremos el método de voltajes de nodo empleando los nodos esenciales del

circuito. El primer paso, como se muestra en la figura (3.1). es obtener un buen diagrama

del circuito de forma que no haya ramas que se crucen, y marcar claramente los nodos

esenciales en el diagrama del circuito. Este circuito tiene 3 nodos esenciales (ne = 3); por lo

tanto, necesitamos dos (ne – 1) ecuaciones de voltaje de nodo para describir dicho circuito.

El siguiente paso es seleccionar una de los tres nodos esenciales como un nodo de

referencia. Aunque teóricamente la selección puede ser arbitraria, en la practica el nodo de

referencia a seleccionar es con frecuencia obvio. Por ejemplo, usualmente el nodo con el

mayor numero de ramas es una buena elección. En el circuito mostrado en la figura (3.1) el

nodo inferior conecta al mayor número de ramas, así que lo tomaremos como nodo de

referencia. Indicamos el citado nodo elegido con el símbolo , como se muestra en la

figura (3.1).

Figura 3.1 Circuito con nodo de referencia y los voltajes de nodo

Después de seleccionar el nodo de referencia, definimos los voltajes de los nodos en

el diagrama del circuito. El voltaje del nodo se define como un incremento de voltaje

desde el nodo de referencia a un nodo cualquiera. Para este circuito debemos definir dos

voltajes de nodo, que se indican como V1 y V2 en la figura (3.1).

Conceptos Básicos 49

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica) Ahora estamos listos para generar las ecuaciones de voltaje de nodo. Esto se hace

escribiendo primero las corrientes que dejan cada rama conectada a un nodo de referencia

en función de los voltajes y sumandos después estas corrientes a cero de acuerdo con la ley

de kirchhoff. Para el circuito de la figura (3.1).

La corriente que sale del nodo 1 para el resistor de 1Ω es la caída de voltaje a través

del resistor dividida por la resistencia (ley de ohm). Dicho tipo de caída de tensión en la

dirección de la corriente en el resistor de 1Ω es (V1 – 10)/1. La figura (3.1) muestra estas

observaciones, la rama 10 (V) - 1Ω con los voltajes y corrientes apropiados y si se sigue el

mismo procedimiento para las demás ramas se tiene:

Una vez que se conoce los voltajes de nodo, se pueden calcular todas las corrientes

de las ramas, los voltajes y las potencias de las ramas.

Ejemplo.

a) Use el método de voltajes de nodo del análisis del circuito para calcular las

corrientes de las ramas Ia, Ib, Ic del circuito que se muestra en la figura (3.2)

b) Calcular la potencia asociada en cada fuente, y especifique si la fuente esta

entregando o absorbiendo potencia.

Figura 3.2

Conceptos Básicos 50

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

a)

b) la potencia asociada con la fuente de 50 V es.

3.2 INTRODUCCION AL METODO DE CORRIENTES DE MALLA.

Conceptos Básicos 51

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura 3.3

En el circuito de la figura (3.3) contiene 7 ramas esenciales en el que se desconoce

la corriente, y cuatro nodos esenciales. Por lo tanto para resolver usando el método de

corrientes de malla debemos escribir cuatro ecuaciones de malla.

Una corriente de malla es la corriente que existe solo en el perímetro de la malla. En

un diagrama de circuitos aparece ya sea como líneas sólidas cerradas, o uno casi cerrada

que sigue el perímetro de la malla apropiada.

Nótese que por definición, las corrientes de malla satisfacen automáticamente la ley de las

corrientes de kirchhoff. Esto es en cualquier nodo del circuito, una corriente de malla dada

entra y deja el nodo a la vez.

Podemos emplear el circuito de la figura (3.4) para mostrar la evolución de la

técnica de corrientes de malla.

Conceptos Básicos 52

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura 3.4

Ejemplo.

a) Use el método de corrientes de malla para determinar la potencia asociada con cada

fuente de voltaje en el circuito de la figura (3.5).

Conceptos Básicos 53

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura 3.5

Para calcular las potencias asociadas en cada fuente necesitamos conocer las

corrientes en cada uno de estos .entonces determinemos el numero de mallas

de corriente.

3.3 TEOREMA DE THEVENIN Y NORTON.

Los equivalentes Thévenin y Nórton son técnicas para la simplificación de circuitos

que se enfocan en el comportamiento de terminales y por lo tanto son de invaluable ayuda

en el análisis de circuitos.

Podemos describir mejor un circuito equivalente Thévenin refriéndonos a la figura

(3.6) que representa un circuito cualquiera compuesto de fuentes dependientes y resistores.

Las letras a y b representan el par de terminales de interés. La figura (3.6b) muestra el

equivalente de Thévenin. Así, un circuito equivalente de Thévenin es una fuente de Conceptos Básicos 54

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica) voltaje independiente VTh en serie con un resistor RTh, .que remplaza a una interconexión de

fuentes y resistores. Esta combinación en serie de VTh y RTh es equivalente al circuito

original en el sentido de que, si conectamos la misma carga a través de las terminales a, b

de cada circuito, obtenemos los mismos voltajes y corrientes en las terminales de la carga.

Esta equivalencia se cumple para todos los valores posibles de la resistencia de carga.

Para representar al circuito original con su equivalente Thévenin, debemos ser

capaces de determinar el voltaje Thévenin VTh y la resistencia de Thévenin RTh. Primero,

observamos que si la resistencia de carga es infinitamente grande, tenemos una condición

de circuito abierto. El voltaje de circuito abierto en las terminales a, b del circuito que se

muestra en la figura (3.6b) es VTh. Por hipótesis, este debe ser el mismo que el voltaje del

circuito abierto en las terminales a, b del circuito original. Por lo tanto, para calcular el

voltaje de Thévenin VTh, simplemente calculamos el voltaje del circuito abierto del circuito

original.

(a) (b)

Figura 3.6 (a) Un circuito general. (b) El circuito equivalente de thévenin

Al reducir la resistencia de carga a cero obtenemos una condición de corto circuito.

Si colocamos un cortocircuito a través de las terminales a, b del circuito equivalente de

Thévenin, la corriente de corto circuito dirigida de a hacia b es

Por hipótesis, esta corriente de cortocircuito debe ser idéntica a la que existiría en un

corto circuito a través de las terminales a, b de la red original. De la ecuación anterior.

Conceptos Básicos 55

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Así la resistencia de Thévenin es la relación entre el voltaje de circuito abierto y la

corriente de corto circuito.

Figura 3.7 Un circuito empleado para ilustrar un

Equivalente de Thévenin

Para calcular el equivalente de Thévenin primero calculamos el voltaje del circuito

abierto de Vab. Obsérvese que cuando las terminales a, b están abiertas no hay corriente en

el resistor de 4Ω. Por lo tanto el voltaje del circuito abierto Vab es idéntico al voltaje a través

de la fuente de corriente de 3 A, que se indica como V0. Encontrando el voltaje V0

resolviendo una sola ecuación de voltaje de nodo. Seleccionando el nodo inferior como el

nodo de referencia, obtenemos.

Por consiguiente el voltaje de Thévenin para el circuito es 32 V.

El siguiente paso es colocar un corto circuito a través de las terminales y calcular la

corriente de cortocircuito resultante.

Figura 3.8 El circuito que señala en la figura (3.7)

con las terminales a y b en cortocircuito

Conceptos Básicos 56

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

La figura 3.8 muestra el circuito con el corto circuito. Obsérvese que la corriente de

corto circuito va en la dirección de la caída de voltaje de un circuito abierto entre las

terminales a, b. Si la corriente de corto circuito va en la dirección del aumento de voltaje de

un circuito abierto entre las terminales, debe colocarse un signo menos en la ecuación de

corriente de corto circuito.

La corriente de corto circuito (iSC) se encuentra fácilmente una vez que se conoce

V0. por lo tanto el problema se reduce a calcular V0 con el corto circuito entre las

terminales. De nuevo, si usamos el nodo inferior como el nodo de referencia la ecuación

para v0 se convierte en.

En la figura 3.9 mostraremos el equivalente de Thévenin sustituyendo los resultados

numéricos del voltaje de Thévenin y la resistencia de Thévenin.

Figura 3.9 El equivalente de Thévenin del circuito

Que se señala en la figura 3.8

3.4 EL EQUIVALENTE DE NORTON

Conceptos Básicos 57

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Un circuito equivalente de Norton consiste de una fuente de cortocircuito

independiente en paralelo con la resistencia equivalente Norton. Podemos derivarlo del

circuito equivalente de Thévenin haciendo simplemente una transformación de fuente. Por

lo que la corriente de Norton es igual a la corriente de corto circuito entre las terminales de

interés, y la resistencia Norton es idéntica a la resistencia Thévenin.

Figura 3.10 Circuito equivalente de Norton

3.5 CIRCUITO EQUIVALENTE DELTA – ESTRELLA (PI O T).

No podemos reducir los resistores interconectados de la figura 3.11 en un resistor

único equivalente entre las terminales de la fuente de tensión si nos restringimos a los

simples circuitos equivalentes, en serie o en paralelo que se presentaron en el capitulo

anterior.

Los resistores interconectados pueden reducirse a un único resistor equivalente por

medio de un circuito equivalente delta – estrella (Δ – Υ) o pi – T.

Figura 3.11 Una red resistiva

Conceptos Básicos 58

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Los resistores R1, R2 y Rm (o R3, Rm y Rx) en el circuito de la figura 3.11 se conoce

como una interconexión delta (Δ) debido a que la interconexión se asemeja a una letra

griega Δ. También se lo conoce como una interconexión pi (Π).

Los resistores R1, Rm y R3 (o R2, Rm y Rx) en el circuito de la figura 3.11 se conoce

como una interconexión en estrella (Υ) debido a que a la interconexión puede dársele una

forma similar a la letra Y. También se le conoce como la interconexión (T).

La equivalencia eléctrica de las configuraciones (Δ) y (Π) como de la configuración

(Υ) y (T) se indican en las siguientes figuras.

Figura 3.12 Configuración Δ vista como una configuración Π

Conceptos Básicos 59

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura 3.13 Estructura Y vista como una estructura T

Figura 3.14 Una transformación Δ – Y

La manipulación algebraica directa para el equivalente de delta a estrella (Δ –Y)

es la siguiente ecuación.

Y al invertir la transformación de estrella a delta (Y –Δ) es la siguiente ecuación.

Ejemplo.

Determine la corriente y la potencia que suministra la fuente de 40 V en el circuito

de la figura 3.16

Conceptos Básicos 60

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura 3.15 circuito para el ejemplo

Es posible determinar con facilidad esta resistencia equivalente después de sustituir

ya sea la Δ superior (100, 125, 25 Ώ) o la Δ inferior (40, 25, 37.5 Ώ) con su Y equivalente.

Entonces se inicia el reemplazo con la Δ superior. Después de eso se calculan las

tres resistencias Y, que están definidas en la figura 3.14.

Sustituyendo los resistores en configuración Y en el circuito que se muestra en la

figura 3.16 se obtiene el circuito que se presenta en la figura 3.17.

Conceptos Básicos 61

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

Figura 3.16 una versión simplificada del circuito que

Se muestra en la figura 3.15

A partir de esta ultima, posemos calcular fácilmente la resistencia de la fuente de

40 V por medio de simplificación serie paralelo.

Figura 3.18 El paso final en la simplificación del Circuito

que se muestra en la figura 3.17

BIBLIOGRAFÍA:

Análisis Básico de Circuitos en ingeniería.................. J. David Irwin

Análisis Básico de circuitos eléctricos ......................... David E. Johnson

Conceptos Básicos 62

Electrotecnia Industrial (Ing. Industrial, Sistemas, Química, Mecánica)

John L. Hilburn

Johnny R. Johnson

Peter D. Scott

Circuitos Eléctricos ...................................................... James W. Nilson

Susan A. Riedel

Conceptos Básicos 63