Con Respuesta 2

download Con Respuesta 2

of 4

description

mate 7 usb parcil

Transcript of Con Respuesta 2

  • Universidad Simn BolvarDepartamento de Matemticas

    Puras y AplicadasEnero - Marzo 2007

    Nombre:

    Carnet: Seccin:

    MA-3111 Segundo parcial (35 %)

    1. a) Desarrolle en la serie de Fourier seno la funcin f(x) = x , x [pi , 0].Hacemos la extensin impar g de f al intervalo [0, pi] g(x) = x, x [pi, pi].g(x)

    +h=1

    bn sennx , bn =2pi

    pi0

    t sennt dt, x [pi, pi].

    bn = 2tpi

    (cosnt

    n

    )|pi0 +

    2

    pin

    pi0

    cosnt dt =2

    ncosnpi = 2

    (1)n+1n

    .

    f(x) +n=1

    2(1)n+1n

    sennx , x [pi, 0].

    b) a partir de este desarrollo calcule la suma+n=1

    1

    n2.

    g(x) +n=1

    2(1)n+1n

    sennx , x [pi, pi]Por la igualdad de Parseval-Steklov1

    pi

    pipi|g(x)|2 =

    +n=1

    |an|2 =+n=1

    4

    n2

    +1

    1

    n2=

    1

    4pi

    pipi

    x2dx =2

    4pi

    pi0

    x2dx =

    =1

    2pi pi

    3

    3=pi2

    6. As

    +n=1

    1

    n2=pi2

    6.

    c) Diga a que converge la serie encontrada en el intervalo [pi,+pi] . x (pi, pi) +n=1

    an sennx = g(x), ya que g es diferenciable. Sea x = pi hacemos la extensin2pi peridica g de g.y = g(x) Sn(pi)

    ng(pi 0) + g(pi + 0)

    2=pi + (pi)

    2= 0 ,

    Sn(+pi) n

    g(pi 0) + g(pi + 0)2

    =pi + (pi)

    2= 0.

    +n=1

    (1)n+1 2n

    sennx =

    {0, si x = pi

    x, si x (pi, pi).

  • DPTO. DE MATEMATICASMA-3111

    2

    2. Hallar la solucin del siguiente problema:utt = 4uxx , donde u = u(x, t),

    u(x, 0) = 0 t 0, x [0, 3] .ut(x, 0) = 8pi sen 4pixu(0, t) = u(3, t) = 0

    u(x, t) = X(x)T (t)

    u(0, t) = 0 X(0)T (t) = 0 X(0) = 0.u(3, t) = 0 X(3)T (t) = 0 X(3) = 0.

    utt = 4uxx T (t)X(x) = 4X (x)T (t) T(t)

    4T (t)=X

    (x)

    X(x)=: .

    T (t) + 4T (t) = 0 , X (x) + X(x) = 0.

    {

    X(x) + X(x) = 0

    X(0) = X(3) = 0

    1) < 0 X(x) = c1ex + c2e

    x

    X(0) = 0 c1 + c2 = 0 c2 = c1;X(3) = 0 c1

    (e 3 e 3

    )= c1 e

    3(e2

    3 1)= 0 c1 = 0,

    c2 = 0 X 0.2) = 0 X (x) = 0 X(x) = c1x+ c2

    X(0) = 0 c2 = 0 , X(3) = 0 3c1 = 0 c1 = 0 X 0.3) > 0 X(x) = c1 cos

    x+ c2 sen

    x

    X(0) = 0 c1 = 0 , X(3) = 0 c2 sen3 = 0 3 = pin, n = 1, 2, . . .

    = n = (pin/3)2 , X = Xn(x) = cn senn x = cn sen

    pin

    3x.

    T(t) + 4nT (t) = 0 Tn(t) = An cos

    4n t+Bn sen

    4n t.

    u = un(x, t) = Tn(t)Xn(x) = (An cos4n t+Bn sen

    4n t)cn sen

    n x

    un(x, t) = (an cos 2n t+ bn sen 2

    n t) sen

    n x.

    Sea u(x, t) =+n=1

    un(x, t) =+n=1

    (an cos 2n t+ bn sen 2

    n t) sen

    nx

    u(x, 0) = 0+n=1

    an senn x = 0 an = 0.

    ut(x, 0) = 8pi sen 4pix+n=1

    bn2n sen

    n x = 8pi sen 4pix.

    +n=1

    bn 2 pin3 sen pin

    3x = 8pi sen 4pix.

    pin

    3x = 4pix si n = 12 bn = 0 , n 6= 12.

    n = 12 b12 8pi sen 4pix = 8pi sen 4pix b12 = 1.

  • DPTO. DE MATEMATICASMA-3111

    3

    u(x, t) = bn sen 2n t sen

    n x

    n=12 = sen 2pin3 t sen pin3 xn=12

    u(x, t) = sen 8pit sen 4pix.

    3. Halle la transformada de Fourier de la funcin f(t) = (4 3t)e(t+2)2Solucin:

    f = F(4e(t+2)

    2 3te(t+2))[]

    = 4 F(e(t+2)

    2)[] 3F

    (te(t+2)

    2)[]

    = 4F(e(t(2))

    2)[] 3 id

    dF(e(t(2))

    2)[]

    = 4ei(2)(et2

    )[] 3 idd

    (ei(2)F(et2)[]

    ),

    F(et2)[] = F(e2t

    2/2)[] =

    12pi 2 e

    222 =

    14pi

    e2/4

    f() = 4e2i 14pi

    e2/4 3 id

    d

    (e2i 1

    4pie

    2/4

    )=

    2e2ipi

    e2/4 3i

    4pi

    (2ie2i e2/4

    2e2i e

    2/4)

    =

    (2 + 3 +

    3i

    4

    )e2ie

    2/4

    pi

    =

    (5 +

    3

    4i

    )e2ie

    2/4

    pi

    .

    4. Halle explcitamente la solucin u = u(x, t) del siguiente problema{ut = 5uxx , donde x R, t 0.

    u(x, 0) = 3(x)

  • DPTO. DE MATEMATICASMA-3111

    4

    Solucin: ] u(, t) = Fx(u(x, t)).

    ut = 5uxx (Fx(u(x, t)))t = 5Fx(uxx(x, t)) ut(, t) = 5(i)2u(, t) ut + 52u = 0.

    u(x, 0) = 3(x) Fx(u(x, 0)) = 3Fx((x)) u(, 0) = 3 1

    2pi u(, 0) = 3

    2pi.

    {

    ut + 52u = 0 , u = u(, t).

    u(, t)|t=0 = 32pi u(, t) = 3

    2pie5

    2t.

    u(x, t) = F1x(u(, t)) =3

    2pi

    +

    e52teixd

    = 3 12pi

    +

    e52t ei(x)d = 3Fx(e52t)[x]

    = 3Fx(e10t2/2)[x] = 3 12pi 10t e

    x2/(210t)|x

    u(x, t) = 320pit

    ex2

    20t .