Contenido de agua y predicción de condiciones de formación de hidratos

33
CONTENIDO DE AGUA Y PREDICCIÓN DE CONDICIONES DE FORMACIÓN DE HIDRATOS HIDRATOS DE GAS: TIPOS, ESTRUCTURA, PROPIEDADES Y CONDICIONES DE FORMACIÓN HIDRATOS DE GAS Semejantes a un hielo sucio, los hidratos constan de una red de agua que atrapa las moléculas de hidrocarburos ligeros. Es un compuesto químico cristalino con uniones débiles de hidrocarburos y agua. ESTRUCTURA DE LOS HIDRATOS DE GAS Los principales formadores de hidratos son metano, etano, propano, i-butano, n-butano, ácido sulfhídrico y dióxido de carbono. N-butano no puede formar hidratos de por sí, pero puede contribuir a la formación de hidratos en una mezcla. Constituidos por 2 o más componentes: 1. Un componente hospedaje (molécula de agua) que se une por puentes de hidrogeno la cual forma una estructura ensanchada con espacios. 2. Un componente huésped (molécula de gas) que llena los espacios o intersticios dejados por la molécula hospedaje.

Transcript of Contenido de agua y predicción de condiciones de formación de hidratos

Page 1: Contenido de agua y predicción de condiciones de formación de hidratos

CONTENIDO DE AGUA Y PREDICCIÓN DE CONDICIONES DE FORMACIÓN DE HIDRATOS

HIDRATOS DE GAS: TIPOS, ESTRUCTURA, PROPIEDADES Y CONDICIONES DE FORMACIÓN

HIDRATOS DE GAS

• Semejantes a un hielo sucio, los hidratos constan de una red de agua que atrapa las moléculas de hidrocarburos ligeros. Es un compuesto químico cristalino con uniones débiles de hidrocarburos y agua.

ESTRUCTURA DE LOS HIDRATOS DE GAS• Los principales formadores de hidratos son metano, etano, propano, i-

butano, n-butano, ácido sulfhídrico y dióxido de carbono.• N-butano no puede formar hidratos de por sí, pero puede contribuir a la

formación de hidratos en una mezcla.• Constituidos por 2 o más componentes:

1. Un componente hospedaje (molécula de agua) que se une por puentes de hidrogeno la cual forma una estructura ensanchada con espacios.

2. Un componente huésped (molécula de gas) que llena los espacios o intersticios dejados por la molécula hospedaje.

Page 2: Contenido de agua y predicción de condiciones de formación de hidratos

TIPOS DE ESTRUCTURAS

• Se reconocen tres tipos de estructuras en los hidratos según la disposición de las moléculas de agua en el cristal: Estructura Tipo l, Tipo ll y Tipo H. ESTRUCTURA TIPO IFormado por pequeñas moléculas huésped tales como : Metano, etano y CO2

Fuente: Gil J, Rojas F. “Métodos Utilizados en la recuperación de gas natural formación de hidratos en lechos marinos” UIS 2008

Fig. Dodecaedro pentagonal (12 lados pentagonales): conformado por 46 moléculas de agua y 8 moléculas de gas.

ESTRUCTURA TIPO IIFormada por moléculas huésped más grande como: propano, isobutano, nitrógeno.

Page 3: Contenido de agua y predicción de condiciones de formación de hidratos

Dodecaedro pentagonal (12 lados pentagonales)

Fuente: Gil J, Rojas F. “Métodos Utilizados en la recuperación de gas natural formación de hidratos en lechos marinos” UIS 2008

Hexacaedro ( 12 lados pentagonales y 4 lados hexagonales Formado por 136 moléculas de agua y máximo 24 moléculas de gas

ESTRUCTURA TIPO HFormada por moléculas huéspedes más grandes: 2-metilbutano, metilciclopentano. Solo se forma si se encuentran presente moléculas de dos tamaños diferentes para formarse establemente.

Contienen máximo 6 moléculas de gas y 34 de agua.

CONDICIONES DE FORMACIÓN

• Condiciones principales que promueven la formación de hidratos son: El gas o el líquido debe estar en o por debajo de su punto de rocío o condición

de saturación (no necesariamente el agua tiene que estar liquida para que se formen hidratos)

Bajas temperaturas

Page 4: Contenido de agua y predicción de condiciones de formación de hidratos

Altas presiones Composición de la corriente de gas Presencia de un formador de hidratos

Para cualquier composición particular de gas a una presión dada hay una temperatura por debajo del cual se formarán hidratos. A medida que aumenta la presión, la temperatura de formación de hidrato también aumenta.

• Condiciones secundarias Altas velocidades del gas Agitación de cualquier tipo Contenido de H2S y CO2

Formación de un sitio físico de nucleación (codo de tubería, orificios, termopozo, escala de tubería)

La alta salinidad desfavorece la formación de hidratos. Por cada 10000ppm se reduce 5ºF la temperatura de formación aproximadamente

PROBLEMAS OPERACIONALES

La formación de hidratos es indeseable, porque los cristales pueden causar: Taponamiento de líneas de flujo, chokes, válvulas e instrumentación Reducción la capacidad de la línea Daños físicos.

CONTENIDO DE AGUA EN EL GAS NATURAL (PARA GAS DULCE Y GAS ÁCIDO)

El contenido de agua en el gas se establece cuando se alcanza la temperatura del punto de rocío del gas a una presión dada.

La saturación de agua contenida en un gas depende de la presión, temperatura y composición. El efecto de la composición incrementa con la presión y es particularmente importante si el gas contiene CO2 y H2S.

Hay varios métodos para determinar el contenido de agua de una corriente de gas: presión parcial y fugacidad gráficas empíricas o correlaciones correcciones por contaminantes ecuaciones de estado

GRÁFICAS EMPÍRICAS O CORRELACIONES

La forma más exacta de determinar el contenido de agua es utilizando las correlaciones de contenido de agua en función de P-T.

PARA GASES DULCES

GRÁFICA DE MCKETTA – WEHE

Page 5: Contenido de agua y predicción de condiciones de formación de hidratos

Esta gráfica nos muestra la cantidad de vapor de agua en equilibrio que puede mantener un gas hasta ser saturado completamente a una determinada presión y temperatura sin que haya condensación. Si el contenido de vapor de agua en el gas es menor al leído, el gas no esta saturado y la temperatura puede ser reducida sin que haya condensación de agua.

La correlación suministra una corrección por la gravedad específica del gas y la salinidad del agua.

Se caracteriza por una alta precisión errores < 5%. Presenta problemas al hacerse la lectura.

COMO SE LEE EL CONTENIDO DE AGUA EN ESTA GRÁFICA La grafica muestra el contenido de agua en libras por millón de

pie cúbico estándar [lb/MMpcs]. La temperatura del gas se representa en el eje de las abscisas,

la presión se representa en las diagonales y finalmente el contenido de agua en las ordenadas.

Se debe conocer la temperatura y la presión a la que se encuentra el gas.

Se entra a la gráfica con la temperatura, cortamos en la diagonal que corresponde a la presión dada y finalmente trazamos una perpendicular al eje ordenado que debe cortar con la cantidad de agua en equilibrio que contiene el gas a esas condiciones.

Por ultimo realizamos la corrección por gravedad específica y salinidad de ser necesaria.

EJEMPLO

Determine la cantidad de agua en equilibrio q puede contener un gas a 150ºF y 3000 psia

SOLUCION

Page 6: Contenido de agua y predicción de condiciones de formación de hidratos

Si la corriente de gas tiene una gravedad especifica de 26 y una salinidad de 3%

W=105[Lbs/MMpcs]

Page 7: Contenido de agua y predicción de condiciones de formación de hidratos

Cg=0.97

Page 8: Contenido de agua y predicción de condiciones de formación de hidratos

Cs=0.93

W= 105*0.97*0.93W=94.72 [Lbs/MMpcs]

PARA UN GAS ÁCIDO

El contenido de agua saturada de CO2 y H2S puro puede ser significativamente mayor que el del gas natural dulce, particularmente a presiones por encima de 700 psia y a temperatura ambiente.

Las correcciones para H2S y CO2 deben aplicarse cuando la mezcla de gas contienen más de 5% de H2S y/o CO2 a presiones por encima de 700 psia. 

La adición de pequeñas cantidades de CH4 ó N2 al CO2 ó H2S pueden reducir dramáticamente el contenido de agua saturada comparado con el gas acido puro.

Hay varios métodos para determinar el contenido de agua de un gas ácido, para un gas con menos de 40% de componentes ácidos un método para determinarlo es la corrección de Maddox.

CORRECCIÓN DE MADDOX

El contenido de agua del gas es calculado como un promedio ponderado de la fracción molar de las tres contribuciones:

W: contenido de agua

Y: fracción molar

YHCWHC: contribución de gas dulce

YCO2WCO2: contribución de CO2

YH2SWH2S: contribución de H2S

EJEMPLO

Un gas natural está compuesto por 71% Hidrocarburos, 16% H2S y 13% CO2. Determine el contenido de agua de este gas a 2000 psia y 100°F

Page 9: Contenido de agua y predicción de condiciones de formación de hidratos

SOLUCIÓN

Para ello usamos 3 graficas:

1. Mcketta-Wehe para determinar la contribución del gas dulce.

WHC= 40 [Lbs/MMpcs]

2. La corrección de Maddox para contenido de agua de H2S en una mezcla de gas natural

Page 10: Contenido de agua y predicción de condiciones de formación de hidratos

WCO2= 70 [Lbs/MMpcs]

3. La corrección de Maddox para contenido de agua de CO2 en una mezcla de gas natural

WH2S= 62 [Lbs/MMpcs]

4.

W= (0.71*40) + (0.13*62) + (0.16*70)

W= 47.66 [Lbs/MMpcs]

Page 11: Contenido de agua y predicción de condiciones de formación de hidratos

PREDICCIÓN DE FORMACIÓN DE HIDRATOS

Consiste en calcular la presión y temperatura mínima a la cual se pueden formar los hidratos, obteniendo así las condiciones óptimas de operación.

Existen varios métodos para predecir estas condiciones de formación:

GRAVEDAD ESPECÍFICA

Conociendo la GE de la corriente de gas podremos predecir a que condiciones de presión y temperatura se formaran los hidratos utilizando la siguiente gráfica:

Page 12: Contenido de agua y predicción de condiciones de formación de hidratos

EJEMPLOEncuentre la presión a la cual se forman los hidratos a una T=50°F en un gas con una G.E= 0,693

SOLUCIÓNLos hidratos se formaran a 320 psia

Page 13: Contenido de agua y predicción de condiciones de formación de hidratos

EXPANSIÓN MÁXIMA PERMISIBLEConociendo la GE del gas y sus condiciones de presión y temperatura iniciales, también podemos hallar su expansión máxima permisible, es decir, hasta qué punto podemos expandir dicho gas a lo largo de una tubería sin que haya formación de hidratos, utilizando las siguientes gráficas:

EJEMPLODeterminar hasta donde puede expandirse una corriente de GE=0.9 a 2000psia y 140ºF, sin que se formen hidratos

SOLUCIÓNVemos que la línea perpendicular a P=2000psia nunca corta con la de T=140ºF, esto quiere decir que la temperatura es lo suficientemente alta para expandir el gas hasta Patm, si es necesario, sin que haya formación de hidratos.

Page 14: Contenido de agua y predicción de condiciones de formación de hidratos

Expansión permisible de un gas natural de GE=0.6 sin que haya formación de hidratos

Page 15: Contenido de agua y predicción de condiciones de formación de hidratos

Expansión permisible de un gas natural de GE=0.7 sin que haya formación de hidratos

EJEMPLO

Una corriente de 100 [MMpcs] de gas natural saturada con vapor de agua a 100psia y 90ºF es expuesto a enfriamiento en una línea de flujo debido a pérdidas de calor, donde alcanzo una temperatura de 35ºF manteniendo su presión constante. Calcular:

a. ¿Cuánta agua líquida se separara del gas?

Page 16: Contenido de agua y predicción de condiciones de formación de hidratos

b. Suponiendo que el gas fluye que fluye por la tubería debe llegar al punto de entrega a 300psia. Encuentre el correspondiente punto de rocío del gas. Habrá o no habrá formación de hidratos, si la GE= 0.7.

SOLUCIÓN

Condiciones 1 Condiciones 2P= 1000psia P= 1000psia T= 90ºF T= 35ºF W= 4500 [Lbs H2O/MMpcs] W= 780 [Lbs H2O/MMpcs]

a. Como inicialmente tengo 4500 [Lbs H2O/MMpcs] en equilibrio y finalmente tengo 780 [Lbs H2O/MMpcs] esto quiere decir que se separaron:

W libre= 4500-780

W libre= 3720 [Lbs H2O/MMpcs]

b. Condiciones 3P= 300 psiaTemperatura de rocío= 60ºF Con la gráfica de expansión permisible de un gas natural de GE=0.7 sin que haya formación de hidratos, leo la temperatura mínima para una expansión de 1000 psia a 300psia:

Tmín= 96ºF 60ºF<96ºF

Si habrá formación de hidratos

Page 17: Contenido de agua y predicción de condiciones de formación de hidratos
Page 18: Contenido de agua y predicción de condiciones de formación de hidratos

Tmín= 96ºF

1. MÉTODO DE KATZ O DE CONSTANTES DE EQUILIBRIO VAPOR-SÓLIDO

Utiliza las constantes de equilibrio vapor-sólido

Kvs= Y/Xs

No es bueno para componentes puros, solo para mezclas La correlación Katz no se recomienda a presiones superiores a 1000-1500

psia, dependiendo de la composición. La predicción de las condiciones de formación de hidratos a presiones más altas requiere el uso de otros métodos

Page 19: Contenido de agua y predicción de condiciones de formación de hidratos

El método de Katz no debe utilizarse para gases que contienen cantidades significativas de CO2 y/o H2S, a pesar del hecho de que los valores Kvs están disponibles para estos componentes

Todas las moléculas demasiado grandes formar hidratos tienen un valor K= infinito. Estos incluyen todas las moléculas más grandes que el n-butano y el nitrógeno

El cálculo es iterativo y la convergencia se logra cuando la siguiente función objetivo se cumple.

Se debe tener especial cuidado cuando algunas isoparafinas de alto peso

molecular y cicloalcanos están presentes, ya que pueden formar una estructura de hidratos tipo H.

Existe una gráfica para la determinación de cada constante de equilibrio.

PASOS1. Asumir una temperatura o presión de formación de hidratos dependiendo lo q

queramos hallar2. Determinación de Kvn para cada componente. 3. Calculo de para cada componente Yn/Kvn.4. Se suma los valores de Yn/Kvn 5. Repetir los pasos de 1-4 para temperaturas adicionales asumidas hasta que la

Σ(Yn/Kvn) sea igual a 1.0

EJEMPLO

Calcule la presión de formación de hidratos a 50ºF, para un gas con la siguiente composición:

Page 20: Contenido de agua y predicción de condiciones de formación de hidratos

SOLUCIÓN

Se suponen presiones de formación y se procede a leer las constantes de equilibrio a las condiciones dadas en las gráficas correspondientes para cada componente:

*infinito

Teniendo estos dos valores por interpolación lineal hallamos:

a 305 psia

La presión de formación de hidratos a 50 °F observada experimentalmente fue de 325 psia.

Page 21: Contenido de agua y predicción de condiciones de formación de hidratos

Constantes de equilibrio vapor-sólido para metano

Constantes de equilibrio vapor-sólido para etano

Page 22: Contenido de agua y predicción de condiciones de formación de hidratos
Page 23: Contenido de agua y predicción de condiciones de formación de hidratos

Constantes de equilibrio vapor-sólido para propano

Constantes de equilibrio vapor-sólido para iso-butano

Page 24: Contenido de agua y predicción de condiciones de formación de hidratos

Constantes de equilibrio vapor-sólido para normal-butano

Page 25: Contenido de agua y predicción de condiciones de formación de hidratos

Constantes de equilibrio vapor-sólido para el dióxido de carbono

Page 26: Contenido de agua y predicción de condiciones de formación de hidratos

Constantes de equilibrio vapor-sólido para el ácido sulfhídrico

PREDICCIÓN DE HIDRATOS PARA GASES CON ALTO CONTENIDO DE CO2 Y H2S

Las condiciones de formación de hidratos de gases con alto contenido de CO2 y H2S pueden variar significativamente a las de compuestos sólo de hidrocarburos

La adición de H2S a una mezcla de gas natural dulce generalmente aumentará la temperatura de formación de hidrato a una presión fija

El CO2 tiene menor efecto sobre la temperatura de formación, en metano puro tiende a incrementarla y en mezclas generalmente la disminuye

MÉTODO DE BAILLE & WICHERT

Se utiliza para predecir temperaturas de formación de hidratos en gases con alto contenido de H2S

Este método se basa en ajustar las condiciones de formación de hidratos de propano para evidenciar la presencia de H2S

Utiliza la siguiente gráfica para sus cálculos:

Page 27: Contenido de agua y predicción de condiciones de formación de hidratos

Tabla de condiciones de formación de hidratos para gases con alto contenido de H2S

EJEMPLOEstime la temperatura de formación de hidratos a 610 psia de un gas con la siguiente composición:

Page 28: Contenido de agua y predicción de condiciones de formación de hidratos

Utilizando el método de Baille y Wichert

SOLUCIÓN1. Entrar por el lado izquierdo de la gráfica a 610 psia y proceder hasta la

línea de la concentración de H2S (4.18% mol)2. Proceder verticalmente hacia abajo hasta la gravedad específica del

gas (GE= 0.682)3. Seguir la línea de guía diagonal a la temperatura en la parte inferior del

gráfico (T = 63.5 °F)4. Aplicar la corrección al C3 utilizando la gráfica en la parte superior

izquierda. Entre por el lado izquierdo en la concentración de H2S y proceder hasta la línea de la concentración de C3 (0.67%). Proceda hacia abajo verticalmente a la presión del sistema y lea la corrección en la escala de la mano izquierda (-2.7 °F)

Nota: la corrección de temperatura al C3 es negativa en el lado izquierdo del gráfico y positivo en el lado derecho.

TH = 63.5 − 2.7 = 60.8 °F

Page 29: Contenido de agua y predicción de condiciones de formación de hidratos

Tcorreción=-2,7 ºF

T=63.5 ºF