Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma

188
Máster De Geofísica 2009‐2010 Proyecto Fin De Máster Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma Alumno: Boualem Youcef Nassim Benabdeloued Tutora: Dr. Arantza Ugalde Aguirre Septiembre 2010

description

El objetivo principal de este trabajo es conseguir un patrón basado en el análisis espectral, que nos permita discriminar, claramente, entre los eventos sísmicos de origen natural y artificial.

Transcript of Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma

 

 

Máster De Geofísica 2009‐2010 

Proyecto Fin De Máster  

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El 

Espectrograma  

 

 

 

 

 

 

 

 

 

 

 

Alumno: 

Boualem Youcef Nassim Benabdeloued 

Tutora: 

Dr. Arantza Ugalde Aguirre 

Septiembre 2010 

 

 

A mis hijos y a mi madre.

 

Agradecimientos: Deseo expresar mi gratitud a la Doctora Arantza Ugalde Aguirre por la oportunidad que me brindo con este trabajo. Quiero agradecer a la Doctora Carme Olivera su ayuda y el tiempo que invirtió en la corrección de este trabajo. A la gente del IGC por acogerme como uno más, y hacer que mi estancia sea agradable. Agradezco también a mí estimada y querida profesora de español, amiga y hermana Mariana, por apostar por mí, como siempre y por todo su apoyo. Por otro lado, no puedo olvidarme de mis compañeros y amigos del Máster de Geofísica, por los buenos momentos que compartimos, y darles las gracias por esta familia que me ofrecieron. Especialmente dedico estos párrafos a estas personas que siempre estaban ahí a pesar de todo. A Yolanda C., a mis hermanitas Naiara, Candela, Alejandra, Luz, sin olvidar mi hermanito Xisco, y a todos los que no están citados aquí, pero que están presente en mi memoria.

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Sumario 1

Índice

Introducción

I Introducción 05

II Objetivos de esta memoria 06

III Estructura de la memoria 07

Capítulo 01 La Red Sísmica de Cataluña

1.1 Introducción 11

1.2 Marco histórico de la Red Sísmica de Cataluña 11

1.3 Sismicidad y el marco geológico de la zona estudio 15

Capítulo 02 Análisis del Catálogo Sísmico

2.1 Introducción 21

2.2 Análisis del catálogo 24

2.3 Magnitud de completitud (Mc) 26

2.4 Contaminación del catálogo (discriminación por Rq) 28

Capitulo 03 Análisis Espectral

3.1 Introducción 41

3.2 Calculo del espectrograma 44

3.3 Resultados del análisis espectral 45

Capitulo 04 Comparación Y Discusión De Los Resultados

4.1 Introducción 53

4.2 Patrón de los eventos sísmicos naturales 53

4.3 Patrón de los eventos sísmicos artificiales 60

4.4 Discusión de los resultados 67

4.5 Comprobación de los resultados 69

4.6 Casos especiales 73

Capitulo 05 Conclusiones Generales

Conclusiones 81

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Sumario 2

Anexos

Anexo 01 87

Anexo 02 93

Bibliografía 179

Introducción

 

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Introducción 5  

I. Introducción

Los catálogos sísmicos representan uno de los resultados más importante de la

sismología, ya que proporciona una base de datos exhaustiva para numerosos

estudios relacionados con temas como la sismotectónica, sismicidad, e

investigación de peligrosidad sísmica.

Pero antes de utilizar estos catálogos es importante realizar un estudio crítico

sobre la calidad, coherencia y homogeneidad de estos datos (Chouliaras, 2009;

Woessner y Wiemer, 2005; Rydelek y Sacks, 1989).

El análisis del catálogo sísmico viene motivado, por el hecho que los catálogos

sísmicos son el resultado del examen del registro de señales sísmicas en el tiempo

y el espacio. Este registro se hace mediante un sistema complejo de redes de

sismómetros heterogéneos, y procesado por distintas personas usando múltiples

programas.

Por consecuencia, un catálogo no está del todo calibrado y necesita una

normalización. Así, incluso los mejores catálogos son heterogéneos e

inconsistentes en el espacio y en el tiempo por las limitaciones de las redes

sísmicas, y probablemente existen muchos eventos artificiales que se incluyen

como sismos (Horasan et al, 2009; Zuñiga and Wiemer, 1999; Habermann and

Creamer, 1994; Ogata y Katsura, 1993; Habermann, 1991 y1987).

Estos eventos artificiales que pueden contaminar los catálogos, tienen como

principal fuente, a nivel local, los eventos creados por las explosiones controladas

utilizadas en minería y obras civiles (minas, canteras, construcción de carreteras,

etc.…).

Generalmente estas explosiones están bastante vigiladas, y existe una constancia

de la posición, la cantidad de explosivos empleada y hora exacta de la explosión,

lo que contribuye a aislar este tipo de eventos y no incluirlo en los catálogos.

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Introducción 6  

Pero por desgracia, estas informaciones no siempre llegan a los técnicos

encargados de la identificación de los eventos sísmicos y la creación de los

catálogos, lo que hace la tarea de identificar los sismos de origen artificial más

laboriosa y ambigua, sobre todo si la señal registrada no es lo suficientemente

clara para ser identifica como tal.

Este tema de discriminación de los eventos sísmicos, se inicio con la vigilancia

internacional para controlar los ensayos nucleares. Luego este tipo de estudios se

extendió a la discriminación de las explosiones químicas, para evitar la

contaminación de los catálogos sísmicos (Allmann et al., 2008;  Chernobay y

Gabsatarova, 1999; Kushnira et al., 1999; Carr y Garbin, 1998; Khalturin et al.,

1998).

En la literatura, se puede encontrar numerosos trabajos, sobre la detección y

eliminación de este tipo de eventos con diferentes metodologías y planteamientos

(Walter et al., 2007; Lin et al., 2006; Mackey et al., 2003.; Ursino et al., 2001.;

Wiemer y Baer, 2000; Tarvainen, 1999; Agnew, 1990).

II. Objetivos de esta memoria

El objetivo principal de este trabajo es conseguir un patrón basado en el análisis

espectral, que nos permita discriminar, claramente, entre los eventos sísmicos de

origen natural y artificial.

Para alcanzar este objetivo general hemos de cubrir diferentes etapas en las que se

plantean los siguientes objetivos específicos:

• Recopilar una base de datos de todos los eventos para el periodo 1977-

2007.

• Analizar esta base de datos y comprobar su posible contaminación por

eventos artificiales. En el caso que lo sea, determinar las zonas más

afectadas por esta contaminación.

• Crear un script con el compilador Matlab, para calcular y representar el

espectrograma y la PSD de las señales escogidas como ejemplos.

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Introducción 7  

• Identificar y establecer un patrón a partir de las representaciones de los

espectrogramas que nos permita discriminar entre los eventos artificiales y

naturales.

III. Estructura de la memoria:

A continuación presentamos un breve resumen de los temas desarrollados en cada

capítulo y las aplicaciones realizadas para lograr los objetivos expuestos.

En el primer capítulo se presenta la Red Sísmica de Cataluña, donde se hará una

pequeña introducción al marco histórico y geológico de esta red y los límites de la

zona de estudio.

El segundo capítulo tratara del análisis de los datos recopilados.

En el tercer capítulo, se comenta los fundamentos del análisis espectral y el

funcionamiento del script en Matlab (anexo 01). También se presenta la zona

seleccionada para las pruebas y los resultados obtenidos para una estación, donde

se presentan algunos ejemplos de los resultados, mientras que los demás

resultados se incorporan en el anexo 02.

Los resultados del análisis y la comparación de los diferentes casos se presentan

en el capítulo cuatro, donde se muestra las principales diferencias que se han

observado entre los espectrogramas de cada tipo de señales. Esta fase, permite

establecer unos patrones para facilitar una discriminación eficaz en ambos casos.

Finalmente, en el quinto capítulo se presentan las conclusiones generales sobre el

trabajo desarrollado en esta memoria.

 

CAPÍTULO 01

La Red Sísmica De Cataluña

 

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

La Red Sísmica de Cataluña 11  

1.1 Introducción:

El catalogo sísmico representa una base de datos muy importante para cualquier

estudio que afecta a los campos de la sismología y el riesgo sísmico, siendo una

de las herramientas más importantes para este tipo de análisis y la comprehensión

de la sismicidad de la zona que le corresponde. Por consecuencia la fiabilidad de

los catálogos afecta directamente a la exactitud de este tipo de estudios. Por ello,

es importante comprobar la bondad y la calidad de las informaciones que nos

ofrece el catalogo (Chouliaras, 2009; Woessner y Wiemer, 2005; Habermann y

Creamer, 1994; Ogata y Katsura, 1993).

Este análisis del catalogo, es aun más necesario, si durante la confección del

catálogo sísmico la red sísmica ha experimentado desarrollos en su estructura, o

en su reconfiguración. Esta investigación, recobra aun más importancia si la zona

de estudio está expuesta a una contaminación por eventos sísmicos artificiales, por

ejemplo, como es el caso de este estudio, por la presencia de canteras.

Partiendo de esta base, en el siguiente capítulo, se presenta una breve introducción

a la Red Sísmica de Cataluña con sus características y desarrollo a lo largo de su

historia.

1.2 Marco histórico de la Red Sísmica de Cataluña

La historia de la instrumentación sísmica en Cataluña empezó con la instalación

del primer sismógrafo en el Observatorio del Ebro, Tortosa, Tarragona, en 1905.

Este evento fue el inicio del registro sísmico, de la zona NE de la Península

Ibérica, seguido del observatorio de Fabra, Barcelona, en 1907 (Olivera et al.

2003).

En 1976 se instaló la primera estación en los Pirineos Centrales, cerca de

Bagnères de Bigorre, por el Laboratoire de Detection et de Géophysique (LDG).

Y en 1977 Hidroeléctrica de Cataluña puso en funcionamiento un sismógrafo, con

la finalidad de estudiar la actividad sísmica de la zona cercana a la presa de

Capítulo 01  

La Red Sísmica de Cataluña 12  

Susqueda (Girona). Estos dos eventos contribuyeron a la mejora del conocimiento

y el control de la sismicidad de la región.

Así pues, hasta los años 70, gran parte de los terremotos ocurridos, no fueron

registrados instrumentalmente, debido a sus pequeñas magnitudes y al escaso

número de estaciones sísmicas. Las localizaciones epicentrales eran muy

imprecisas, y por consecuencia, la información macrosísmica era todavía la fuente

de datos más fiable para localizar movimientos sísmicos en el NE de la Península

Ibérica.

A partir de 1984, el Servei Geològic de Catalunya (SGC) publica anualmente las

características de la actividad sísmica en el Butlletí Sismològic, dónde se recopilan

los datos de las estaciones sísmicas de las distintas instituciones. Y desde 1985, el

SGC, gestiona la red sísmica regional y realiza el análisis de los registros con el

objetivo de estudiar la sismicidad de Cataluña y las regiones adyacentes; esta área

se delimita entre las latitudes 40.17º a 43.33º y las longitudes -0.33º a 4.0º.

El número de sismógrafos de la red se incrementó progresivamente hasta un

máximo de 12 sismógrafos de corto período y de una componente vertical,

inicialmente con un registro analógico y a continuación digital, incorporando

diferentes sistemas de transmisión de los datos por teléfono (registro analógico) y

satélite (registro digital).

Paralelamente, el Observatoire Midi-Pyrénées (OMP), a partir de 1988, puso en

funcionamiento una red sísmica en la zona francesa de los Pirineos (Souriau y

Pauchet, 1998). Los datos de las estaciones de campo de ambos lados de la

frontera, eran transmitidos vía satélite, y eran recibidos simultáneamente en los

centros de recepción de Barcelona y Toulouse.

El análisis conjunto de los registros obtenidos en ambas redes permitía un buen

seguimiento de la actividad sísmica, tanto de la región pirenaica como de las

zonas adyacentes.

La década de los años 90, caracterizada por sensores de corto período y de

componente vertical, representaba la etapa instrumental en la que se mejoro

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

La Red Sísmica de Cataluña 13  

sustancialmente la precisión de las localizaciones hipocentrales y el conocimiento

del proceso de ruptura de los focos.

Más tarde, y con las ventajas que ofrecían los avances en el campo de la

comunicación y de la instrumentación, el SGC, parte integrante del Instituto

Cartográfico de Cataluña (ICC) desde 1995, diseño y planifico la renovación de la

red sísmica (Roca et al., 2000), con dos objetivos principales:

• Proporcionar información rápida a los servicios de Protección Civil y a la

sociedad en general,

• Obtener sistemáticamente datos de calidad para la comunidad científica.

La nueva red, que entro en funcionamiento en junio de 1999, está formada por

sensores de banda ancha de 3 componentes y estaciones basadas en plataformas

VSAT (Very Small Aperture Terminal), las cuales transmiten la señal sísmica en

continuo, en tiempo casi real, vía satélite, al centro de procesamiento del IGC.

Los datos se almacenan y se procesan mediante un sistema automático de

localización. Después de un proceso de análisis manual por un técnico, las formas

de onda y las localizaciones de los sismos registrados se divulgan diariamente en

la web del Instituto Geológico de Cataluña (IGC).

El sistema de comunicaciones por satélite (sistema Libra de la firma Canadiense

Nanometrics) está constituido por:

a) Un sistema central, instalado en la sede del ICC en Barcelona que

incluye un Hub, una antena de 3.8 m de diámetro y un ordenador de control

integrado en una red local.

b) Plataformas VSAT instaladas en las estaciones de campo al lado de

los sensores sísmicos de banda ancha y de las estaciones GPS.

En las comunicaciones por satélite se utiliza el protocolo TDMA (Time Division

Multiple Access) con una única portadora. Esto permite que el mismo segmento

espacial sea compartido por todas las estaciones de la red de forma secuencial en

el tiempo.

Capítulo 01  

La Red Sísmica de Cataluña 14  

El acceso al segmento espacial está controlado por la estación central (Hub). El

sistema de comunicaciones utiliza la misma portadora para el inbound y el

outbound y minimiza el ancho de banda ocupado en el satélite, por consecuencia

reduce su coste. El satélite utilizado para las comunicaciones es el Hispasat-1-A.

En resumen, la ampliación de la instrumentación de la Red Sísmica de Cataluña

en la última década se hizo según las siguientes fases:

• La primera fase, 1999-2000, se han instalado las cuatro primeras

estaciones sísmicas VSAT y un centro de recepción y procesado de

datos.

• La segunda fase, 2001-2003, se instalaron tres nuevas estaciones.

• La tercera fase, 2004-2009, se han instalado doce nuevas

estaciones.

A partir de octubre de 2009, la

Red Sísmica de Cataluña VSAT

consta de 16 estaciones de banda

ancha y 3 acelerógrafos (fig.

1.01).

La tabla 1.01 presenta un

resumen de las diferentes

estaciones de la red sísmica

VSAT, con el código, el nombre,

la posición, la altura

correspondiente y la fecha de

inicio de funcionamiento

(www.igc.cat).

El sismógrafo ARBS de la red VSAT, está instalado en la Rabassa, Andorra, con

la colaboración del l’Institut d’Estudis Andorrans (IEA) y el IGC.

Los acelerógrafos, FNEB, FMON y FESP de la red VSAT, instalados en Francia

son propiedad del Bureau de Recherches Géologiques et Minières (BRGM).

Figura 1.01: Situación de la zona de estudio (www.igc.cat).

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

La Red Sísmica de Cataluña 15  

Código Nombre de la Estación Latitud N (º) Longitud E (º) Altura (m) Fecha de inicio

CAVN Les Avellanes 41.8826 0.7516 634 06/1999 CBEU Beuda 42.2567 2.6769 824 05/2007 CBRU Bruguera 42.2855 2.1803 1327 12/2000 CCAS Cassà de la Selva 41.8840 2.9053 197 12/2004 CEST Esterri de Cardós 42.6005 1.2553 1325 06/2006 CFON Fontmartina 41.7623 2.4356 973 06/1999 CGAR Garraf 41.2944 1.9149 584 08/2001 CLLI Llívia 42.4792 1.9742 1413 06/1999

CMAS Mas de Barberans 40.7267 0.3150 530 04/2006 COBS Casablanca 40.7141 1.3573 -160 08/2007 CORG Organyà 42.2303 1.3176 716 02/2001 CORI Oristà 41.9735 2.0499 331 02/2006 CPAL Palau Saverdera 42.3116 3.1636 223 07/2006 CSOR Soriguera 42.3756 1.1339 1227 12/2001 CTRE Tremp 42.3242 0.7736 1318 07/2006 ARBS La Rabassa 42.4345 1.5337 2166 10/2009 FESP Espira 42.8199 2.8222 240 10/2008

FMON Montoussé 43.0634 0.4164 647 09/2008 FNEB Nébias 42.9042 2.1079 578 01/2007

Tabla 1.01: Detalle de las estación de la red símica Catalana (www.igc.cat)

1.3 Sismicidad y el marco geológico de la zona de estudio

Si se considera la sismicidad de la zona de estudio durante el siglo XX, se puede

comprobar que solo hubo dos terremotos, en 1923 y en 1927, que produjeron

daños alcanzando las intensidades de VIII (MSK) y VII (MSK) respectivamente

(Susagna y Goula, 1999).

Mientras, si se remonta en la historia hasta la Edad Media, se encuentra la

ocurrencia de diversos terremotos destructores, de hasta IX de intensidad, que

afectaron gran parte del territorio, entre ellos, el del año 1373 en la Alta Ribagorça

y la serie del año 1427-28 que ocasionó daños en las comarcas del Ripollès,

Garrotxa, Cerdanya y la Selva (Olivera et al., 2006).

La actividad sísmica de la zona de estudio se considera inferior en comparación

con la de la zona sur-este de la Península Ibérica, y es mucho más inferior si se

compara con la región mediterránea central y oriental, como Italia, Grecia o

Turquía.

Capítulo 01  

La Red Sísmica de Cataluña 16  

La sismicidad de la zona

de estudio correspondiente

a un periodo1977-2007

(fig.1.02), muestra

características relacionadas

con el contexto geológico,

representado en tres

grandes unidades: los

Pirineos, el sistema

mediterráneo y la cuenca

del Ebro.

La mayor actividad

sísmica se concentra

principalmente en los

Pirineos y la zona

mediterránea. En la depresión del Ebro la actividad es baja por las pequeñas

deformaciones tectónicas que se pueden observar en situ.

En los Pirineos, la mayor actividad (fig. 1.02) se sitúa en la parte occidental del

eje de la cordillera, principalmente en el batolito granítico de la Maladeta, donde

en el año 1923 se produjo un seísmo de magnitud 5.5 causando daños en el Valle

de Aran (Susagna et al., 1994). En esta misma área, en el año 1373, se tiene

constancia que hubo un seísmo destructor de intensidad VIII-IX en la zona de la

Ribagorça (Olivera et al., 2006).

En la parte oriental de los Pirineos aparece una sismicidad difusa que va del

margen septentrional de la zona axial oriental, donde en el año 1996 se produjo el

mayor seísmo registrado durante aquel periodo, de magnitud 5.2 en la comarca

Fenolledes, hasta el margen meridional, en las comarcas de la Cerdanya y del

Ripollès.

El número de seísmos registrados en el sistema Mediterráneo ha sido inferior al de

los Pirineos, pero los seísmos han alcanzado valores de magnitud superior a 4,

Figura 1.02: Mapa de sismicidad de Catalunya 1977-1997 (ICC, 1999).

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

La Red Sísmica de Cataluña 17  

entre 1987 y 1995, frente a las costas de Tarragona, en el año 1991, frente a la

costa del Garraf y en 1994, delante de de la costa del Marseme.

Entre los Pirineos y el sistema Mediterráneo se localiza la zona de transferencia,

con las fallas de edad pliocena-cuaternaria de dirección NW-SE que afectan la

terminación oriental de la cuenca del Ebro. En la zona se sitúa la zona volcánica

neógena-cuaternaria donde se localizan los epicentros de la serie sísmica

destructora que se inició en febrero de 1427 y finalizó con el terremoto del 2 de

febrero de 1428, de intensidad IX, con epicentro en el Ripollès (Olivera et al.,

2006). La actividad sísmica reciente ha sido muy baja en la parte central de este

sistema de fallas y se ha concentrado en las extremidades norte (margen

meridional de los Pirineos) y el sud (margen meridional de la depresión de la

Selva), donde se observa una densa presencia de epicentros de pequeñas

magnitudes.

 

 

 

 

 

 

   

 

 

 

CAPÍTULO 02

Análisis Del Catálogo Sísmico

 

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Capítulo 02 21

 

 

2.1 Introducción:

Para el presente estudio se han recopilado las listas de los terremotos ocurridos en

el área que corresponde a Cataluña y las zonas adyacentes, a partir de las listas de

terremotos publicada en la web del IGC (www.igc.cat). En esta web, se

encuentran las dos principales fuentes de datos utilizadas en este trabajo, que son:

− El mapa de sismicidad de Cataluña 1977-1997.

− El Butlletí Sismológic anual desde 1984 hasta 2008.

• En el caso la primera fuente, el inicio de este periodo se considero a partir de

1977, porque hasta la mitad de los años 70 el número de sismógrafos funcionando

en esta región era muy bajo. La densidad de las estaciones sísmicas y la calidad de

los registros han ido variando durante el periodo 1977-1997, lo que comporta una

cierta heterogeneidad de los datos. Desde el año 1977 hasta el año 1985, el

número de estaciones era bajo, solo se disponía de una resolución baja para la

localizaciones epicentrales (un error del orden de 10 km) y control impreciso de la

profundidad. Para aquel intervalo de tiempo, se han considerado las localizaciones

del LDG complementadas con las del SGC.

Desde el año 1986 hasta el año 1997, la red de estaciones se densifico y la

distancia en algunas estaciones se redujo a 30 km. Los seísmos localizados dentro

de la red tienen una precisión de 2-3 km para el epicentro y unos 5km para la

profundidad. En el cálculo de las determinaciones hipocentrales se han utilizado

los datos de estaciones de diferentes organismos (SGC, 1986-1997; SGC/OMP,

1990-1996).

En cuanto a las magnitudes, desde el año 1997 hasta el año 1985, los valores

considerados son los facilitados por el LDG. Desde el año 1986 hasta el año 1989,

el SGC calculó la magnitud de duración ajustada con el LDG. Entre los años 1990

y 1996, se adoptó la magnitud calculada por el OMP y a partir del año 1997 la

magnitud de Richter.

Capítulo 02  

Análisis del Catálogo Sísmico 22

En el histograma de los seísmos localizados en la red sísmica de Cataluña, para el

periodo 1977-1997 (fig. 2.01), se observa un aumento del número de eventos

localizados de pequeñas magnitudes, principalmente gracias a una mejor densidad

de sismógrafos (IGC).

• Finalmente, para la segunda fuente (Butlletí Sismólogic anual desde 1986

hasta 2007), la determinación de los hipocentros se han considerado, desde el año

1984 a partir de los propios datos del IGC y de otros organismos como

l’Observatoire Midi-Pyrénéees, Institutd’Estudis Catalans, Instituto Geográfico

Nacional, Observatori de L’Ebre, Observatori Fabra y el Laboratoire de

Détection et de Geophysique.

Figura 2.01: Histograma de los seísmos para el periodo 1977-1997 (ICC, 1999).

Figura 2.02: Representación del número de terremotos localizados durante el periodo 1984-2008. (IGC, 2009).

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Capítulo 02 23

El histograma de la figura 2.02 representa el número de eventos localizados

durante el periodo 1984-2008. En esta figura se observa un aumento de la

actividad sísmica en los últimos años que corresponde principalmente a la

ocurrencia de tres crisis sísmicas. La primera sucedió en 2004, en el Ripollès, con

un terremoto de magnitud 4.0, el segundo con un epicentro en Francia, en la zona

de Hautes Pyrénées, que tuvo lugar en 2006, y el ultimo, en el Alt Urgell, en julio

de 2007 (www.igc.cat).

A partir del conjunto de datos recopilados de la web del IGC, se ha elaborado

un catálogo formado por la base de datos para el periodo 1977-2007. La selección

de los datos se restringió a los eventos sísmicos con epicentros localizados dentro

de la zona de estudio (entre las latitudes 40.17º a 43.33º y las longitudes -0.33º a

4.0º).

De esta selección se obtuvieron 6810 eventos sísmico con valores de magnitud

entre -0.6 y de 5.2, localizados entre 0 a 35 Km de profundidad (fig. 2.03).

Figura 2.03: Distribución de los eventos recopilados en la zona de estudio (1977-2007).

Capítulo 02  

Análisis del Catálogo Sísmico 24

Figura 2.04: Número de sismos con valores de magnitud y de profundidad determinada para el periodo 1977-2007. 

2.2 Análisis del catálogo

De los 6810 datos recopilados para el periodo 1977-2007, se han eliminado 3755

eventos con una magnitud y/o profundidades indeterminadas (más del 50%).

A partir de este punto, la nueva base de datos que se va considerar para el análisis

consta de los 3055 eventos sísmicos que quedan.

En la siguiente figura (fig. 2.04) se representa el número de seísmos con valores

de magnitud y de profundidad determinada para el periodo 1977-2007 en función

de los años, y se observa un crecimiento del número de eventos sísmicos

registrados a lo largo de los años. Este crecimiento se puede atribuir al desarrollo

de la red sísmica de Cataluña, a partir de 1986 hasta hoy un día. Este desarrollo,

se debe al incremento y la mejor de las estaciones sísmicas a lo largo de los años,

lo que da lugar a una buena densidad de la red y una mejora en su sensibilidad.

Para el análisis de los datos recopilados en este trabajo, se utilizo el script zmap,

escrito en Matlab, por Stefan Wiemer (Wiemer S., 2001.; Wiemer y Zúñiga,

1994).

En la siguiente figura (fig. 2.05), se representa el mapa de sismicidad, obtenido a

partir de este nuevo catálogo.

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Capítulo 02 25

Figura 2.05: Distribución de la recopilación de los eventos estudiados para el periodo 1977-2007 depurados de los eventos con una magnitud y/o profundidad incógnita.

En la siguiente figura (fig.

2.06) se muestra el número

de eventos sísmicos

registrados en función de

las magnitudes para todo el

periodo (1977-2007).

A partir de esta figura, se

puede comprobar que la

mayoría de los eventos

tiene una magnitud

comprendida entre 0.5 y

3.5. Figura 2.06: Distribución del número de eventos sísmicos

en función de las magnitudes.

Capítulo 02  

Análisis del Catálogo Sísmico 26

Los eventos con magnitudes más bajas que 0.5, representan el 6.48% (198

eventos) del total de los eventos registrados. Mientras que los eventos superiores a

3.5 representan el 1.8% (55 eventos) del total de los eventos registrados en este

catálogo. La magnitud máxima en este catálogo registrada corresponde a 5.2.

Es importante anotar, que estas comparaciones son más cualitativas que

cuantitativas, ya que la determinación de las magnitudes ha ido cambiando de

referencia para diferentes épocas, dentro de los periodos de donde se han extraído

los datos, como ya se presentó al inicio de este capítulo. No obstante, las

diferencias que pueden existir al calcular una magnitud con una referencia u otra,

no son muy significativas a nivel de nuestro estudio, ya que, lo que nos interesa es

el incremento, en general, de la sensibilidad de la red sísmica a lo largo de los

años.

Este incremento en la sensibilidad de la red sísmica, permite detectar eventos de

magnitudes pequeñas, así aumenta la posibilidad que se detecten eventos

artificiales, que a su vez, si no se tratan adecuadamente, pueden contaminar los

catálogos sísmicos.

2.3 Magnitud de completitud (Mc):

La magnitud de completitud, Mc, permite evaluar la calidad del catálogo sísmico

y se define como la magnitud más baja por la cual el 100% de los eventos están

detectados en el espacio y en el tiempo (Chouliaras, 2009; Woessner y Wiemer,

2005; Wiemer y Wyss, 2000; Rydelek y Sacks, 1989; Bender, 1983; Aki, 1965;

Utsu, 1965).

Por debajo de esta magnitud la red sísmica no registra gran parte de de estos

eventos, ya sea porque sus magnitudes son demasiadas pequeñas para que las

estaciones les puedan detectar o porque se han mezclados con la coda de eventos

más grandes y pasaron desapercibidos.

La distribución frecuencia-magnitud de Gutenberg-Ritcher (1944), describe la

relación entre la frecuencia de ocurrencia y la magnitud de los sismos:

Log N = a – bM (2.01)

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Capítulo 02 27

Donde N es el número de eventos con magnitud igual o mayor que M, y a y b son

parámetros que describen la sismicidad regional. La figura 2.07 representa

gráficamente la relación de recurrencia, donde Mc es la magnitud de completitud,

a partir de la cual los datos pueden representarse por una línea recta cuya

pendiente es b.

El valor de a representa una tasa de actividad cuya magnitud describe la

ocurrencia promedio de eventos (Reiter, 1990).

Por otra parte, el valor de b o pendiente de la línea de regresión, indica el número

relativo de eventos grandes y pequeños. Un valor bajo de b (pendiente con

tendencia horizontal) puede implicar una mayor proporción de eventos grandes

que un valor alto de b (pendiente con tendencia vertical)

A partir de los datos recopilados para este trabajo, calculamos la Mc, que

corresponde al periodo 1997-2007. Durante este periodo se ha utilizado la

definición de Richter y por tanto hay homogeneidad de los valores considerados

de las magnitudes. La figura 2.07, representa el log de eventos acumulados y no

acumulados e (Log N = a – bM) en función de la magnitud.

Figura 2.07: La frecuencia de distribución de las magnitudes registradas a lo largo del periodo 1997-2007. Para valores cumulativos (cuadrados) y no cumulativos (triángulos).

Capítulo 02  

Análisis del Catálogo Sísmico 28

Dado el periodo de representación de los datos de 10 años, solo se han tomado en

cuenta los eventos con magnitudes inferior a 3.5, ya que para magnitudes más

altas los periodos de recurrencia son mayores.

A partir de esta grafica se obtiene los siguientes resultados: la Mc calculada es

igual a 1.8, un valor de a igual a 3.82 para toda la zona de estudio (fig.2.07).

Según los resultados obtenidos, la red sísmica permite, para el periodo 1997-2007,

detectar al 100% todos los eventos superiores a una magnitud igual a 1.8.

2.4 Contaminación del catálogo (discriminación por Rq)

Como se comentó anteriormente, los catálogos sísmicos representan una fuente de

información muy valiosa para los diferentes campos de investigación en la

sismología. Por ello, además de verificar la bondad de los datos, la homogeneidad

y su completitud, es importante comprobar que estos catálogos no están

contaminados por eventos sísmicos artificiales, y si lo están es preciso

eliminarlos.

Una de las técnicas más eficaz para detectar está contaminación consiste en

representar la distribución de los eventos sísmicos registrados en función del

horario del día (Chernobay y Gabsatarova, 1999; Agnew, 1990).

Generalmente, las explosiones en canteras suceden en el horario laboral, lo que

afecta la distribución de los eventos sísmicos registrados en función de este

horario, ya, que se incrementara el número de estos eventos registrado durante

este horario más de lo normal (en comparación con el horario no laboral o

nocturno). Esta característica es un buen indicio para comprobar la contaminación

de un catálogo sísmico.

Como última parte de este capítulo, se analizara el catálogo compilado para este

trabajo, con el fin de comprobar su posible contaminación por eventos de origen

artificial. Esta prueba se basará en el análisis de la relación del número de eventos

en función del horario diario y nocturno.

Si se observa la representación de la distribución del número de eventos, para el

periodo 1977-2007, en función de la magnitud (fig.2.07), pone de manifiesto que

la mayoría de los eventos tienen magnitudes que van desde 0.5 hasta 3.5. A partir

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Capítulo 02 29

de esta observación y el cálculo de la Mc (1.8), se puede comprobar, que en

general, esta red sísmica, es lo bastante sensible para detectar eventos con una

magnitud mayor o igual a 1.8 y menor de 3.5. Los eventos que están dentro de

este rango de magnitudes, también, pueden ser atribuidos a explosiones en

canteras (magnitudes inferiores a 2.5). Estos eventos artificiales, representan una

contaminación que puede afectar a los catálogos si no se discriminan

adecuadamente.

Para el cálculo de la Rq dividimos el catálogo en dos partes en eventos menores

que una magnitud de 3.5 e igual o superior a 3.5. Esta distribución nos permite

resaltar mejor las diferencias entre los picos en la distribución de eventos por

horas del día, sabiendo que la mayoría de las explosiones en canteras no superan

la magnitud de 2.5.

Para Magnitudes entre menores o igual a 3.5

En la siguiente figura (fig. 2.09), se presenta estos mismos eventos registrados en

función de las horas del día.

Figura 2.08: Distribución del numero de eventos para el periodo 1977-2007. 

Capítulo 02  

Análisis del Catálogo Sísmico 30

De la figura 2.09, se puede

observar, que a partir de las 7

Hrs hasta las 19 Hrs (GMT),

hay una bajada en el número

de eventos sísmicos

registrados en este horario en

comparación con el resto de

horas del día. Esta

observación es válida menos

para las 15 Hrs, 18Hrs y

22Hrs (GMT), donde se

observa tres picos importantes

en el número de eventos en

comparación con el resto de horas del día.

A partir de los datos del catálogo recopilado, se puede calcular la relación del

número de eventos en función de día/noche, Rq. Este valor permite identificar si

el catálogo está contaminado con eventos sísmicos de origen artificial.

El Rq se calcula mediante la siguiente formula (Wiemer y Baer, 2000):

Rq=Nd Ln/(Nn Ld) (2.02)

Donde Nd es el número de total eventos en el periodo diurno, Nn es el número

total de los eventos en el periodo nocturno, Ln y Ld son los números de horas de

cada periodo respectivamente (Ln+Ld=24).

Para este estudio, se considera que el periodo diurno empieza desde las 6 horas

hasta las 18 horas en GMT. La elección de este horario se decidió gracias a la

identificación del horario habitual que se suele realizar los tiros (explosiones) en

las diferentes canteras que se encuentran en la zona observada.

La figura 2.10, muestra la variación del valor Rq en el mapa correspondiente a la

Red Sísmica de Cataluña, para los eventos registrados con magnitudes entre -0.5 y

3.5, y un horario de día entre las 6 hasta las 18 hrs (GMT), desde 1977 hasta 2007.

Figura 2.09: Eventos registrados en función de las horas del día (magnitudes entres -0.5 y 3.5 entre

1977 y 2007).

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Capítulo 02 31

Según Wiemer (2000), las zonas con una Rq>1.5 indican la posible presencia de

canteras (explosiones). En la figura 2.10 se presenta el mapa de distribución de la

Rq en la zona de estudio. Las zonas marcadas como (a) tienen una 2≥Rq>3.5, lo

que puede significar la presencia de una contaminación por explosiones. Mientras

que las zonas marcadas como (b) tienen una 1.5>Rq>2, estos valores se pueden

atribuir a algunos eventos artificiales que fueron identificados como eventos

naturales.

A partir de la figura 2.10 se han obtenido las siguientes coordenadas de las zonas

enmarcadas: a1 (43.25, 0.5); a2 (42.30, 1.5); b1 (42.75, 1.75); b2 (41.75, 0.75); b3

(41.40, 1.00). Utilizando el Google Earth se identificar estas zonas (fig2.11).

 

Figura 2.10: Mapa de distribución de la Rq, para eventos para el periodo 1977-2007, con magnitudes menores o igual a 3.5 (para un horario diurno de las 6 hrs a 18 hrs

(GMT), grid 0.01x0.01, ni=50).

(a)

(b)

a1 b1

b3

a2

b2

Capítulo 02  

Análisis del Catálogo Sísmico 32

En la siguiente parte se presentan algunos ejemplos de las diferentes canteras

localizadas visualmente cerca de cada una de las zonas (las canteras están

indicadas con flechas negras).

Zona a1:

Figura 2.11: Identificación de las diferentes zonas con un Rq superior a 1.5 (Google Earth).

Figura 2.12: Ubicación de la zona a1.

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Capítulo 02 33

Zona a2:

Figura 2.13: Algunos ejemplos de canteras ubicadas cerca de la zona a1.

Figura 2.14: Ubicación de la zona a2.

Capítulo 02  

Análisis del Catálogo Sísmico 34

Zona b1:

Figura 2.15: Algunos ejemplos de canteras ubicadas cerca de la zona a2.

Figura 2.16: Ubicación de la zona b1.

Figura 2.17: Algunos ejemplos de canteras ubicadas cerca de la zona b1.

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Capítulo 02 35

Zona b2:

Zona b3

Figura 2.19: Algunos ejemplos de canteras ubicadas cerca de la zona b2. 

Figura 2.18: Ubicación de la zona b2.

Figura 2.20: Ubicación de la zona b3.

Capítulo 02  

Análisis del Catálogo Sísmico 36

Para magnitudes superiores a 3.5

Si se considera los eventos con una magnitud superior a 3.5, se puede comprobar

que hay pocos eventos (81 eventos sísmicos) a lo largo de todo el periodo

considerado (1977-2007).

Figura 2.21: Algunos ejemplos de canteras ubicadas cerca de la zona b3. 

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Capítulo 02 37

El número de los eventos

sísmicos, con una magnitud

superior a 3.5, recopilados para

el periodo 1977-2007, no ha

experimentado cambios

significativos (fig. 2.22).

Esta estabilidad de eventos

registrados en función de los

años, y para magnitudes superior

a 3.5, viene dada que la red

sísmica de Cataluña, detectaba

este rango de amplitud desde su inicio.

Con tan pocos eventos, no se puede tener una buena base para calcular la Rq, ya

que la comparación de estos últimos se verá influenciada por una concentración

de eventos en una zona más que en otra. Además, es muy raro que haya una

explosión química de una magnitud superior a 3.5, sobre todo en la obra civil.

Figura 2.22: Detectabilidad de eventos de magnitudes entre 3.5 hasta 5.5 entre 1977 y 2007. 

 

CAPITULO 03

Análisis Espectral

 

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Análisis Espectral 41  

3.1 Introducción:

En las últimas décadas surgieron muchos estudio referente a la discriminación

entre eventos naturales y artificiales, este tipo de estudio se inicio por la necesidad

de vigilar los ensayos de las explosiones nucleares (Su et al., 1991; Denny et al.,

1995; Walter et al., 1995 y 2006). Además de las explosiones nucleares existen

numerosos estudios referidos a los eventos creados por explosiones químicas y su

discriminación.

Esta discriminación se basa en las diferentes características de estos eventos. En la

tabla 3.01, se presentan las principales diferencias entre un terremoto y una

explosión, Según Walter et al. (2007).

Por otra parte, existe un guía de las pautas a seguir para la discriminación entre

terremotos y explosiones en minas (tabla 3.02), publicado por el U. S. Geological

Survey (USGS) y el National Earthquake Information Center (NEIC), publicado

en 1999 (www.usgs.gov).

Tabla 3.01: Principales diferencias entre un terremoto y una explosión (Walter et al., 2007).

Capitulo 03  

Análisis Espectral 42  

USGS-NEIC Discriminiation criteria

1. Computed locations - Locations of many of the provisionally identified explosions occur within or near well-known mining districts that have large surface mines, and provisionally identified explosions occur where other similar size events have regularly occurred at the same time of day. Roof collapses that are large enough to be detected and located by our procedure are much less numerous in our catalogs than explosions: they are identified by virtue of occurring in groups in the neighborhoods of some underground coal-mines that use longwall technology.

2. Time of day - Mine explosions tend to be set off during local daytime hours, even if the mines are operating 24 hours a day.

3. Seismic waveforms - Seismograms at a given station for explosions at the same mine tend to be similar from event-to-event, both in the relative times and amplitudes of different seismic phases within each seismogram and in the absolute amplitudes of the seismic phases. Seismograms may have the general characteristics expected for mine explosions -- emergent beginning of phases due to ripple-firing, no S, presence of Rg phase.

4. Events not reported as felt - Calculated magnitudes of seismic events in some mining districts are large enough that, if the events were earthquakes, they would probably have been felt at nearby towns and reported to the USGS/NEIC or to regional seismographic network operators.

5. Independent knowledge of operators of regional seismographic networks

Tabla 3.02: Pautas para discriminar terremotos de explosiones en canteras.

Como se comento anteriormente, existen varios trabajos dedicados al tema de la

descriminacion entre evnetos naturales y artificiales. entre ellos se encuentran los

siguientes:

• Ling et al. (2006), planteo la discriminacion mediante la localizacion de las

canteras utilizando fotos satelitelite y mapas, asi, se excluyen los eventos

localizados en estas canteras.

• Trabajando con las formas de ondas y el analisis espectral, Ursino et el.

(2001), observo que los terremotos locales son mas ricos en alta frecuencia

que las explosiones. Ademas, se utilizo una red de intiligencia artificia

(Artificial Neural Networks- ANN) para la clasificacon de lo eventos.

• Según Allman et al. (2008), la discriminacion basada en la forma de ondas se

puede divir en:

Determinacion de proporción entre las amplitudes de las fases sismicas.

Metodos espectrales.

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Análisis Espectral 43  

El estudio de la coda.

• Finalmente, con la descriminacion mediante el horario dia/noche permite

aislar las zonas donde existen canteras activas, este tipo de descriminacion se

basa en la comparacion entre el número de eventos registrados de dia y el de

noche (Agnew D. C., 1990; Wiemer S. and Baer M., 2000; Mackey et al.,

2003). Una vez detectadas las zonas afectadas se eliminan los datos

correspondientes a los eventos de origen artificial.

Para la discriminación de los eventos estudiados en este trabajo se opto por la

aplicación del método espectral. Esta elección viene motivada por el hecho que es

un método que permite ver la distribución de la energía de la señal en una gama

de frecuencia determinada. Esta característica permite obtener unos patrones que

facilitan la identificación de los diferentes eventos.

Este análisis se basa en el cálculo de la densidad espectral de potencia (Spectral

Power Density, PSD) aplicada a las señales registradas en cada estación y para

cada uno de sus componentes.

Para este estudio se han tratados 65 eventos sísmicos registrados en las diferentes

estaciones de la Red Sísmica de Cataluña, con un total de 1219 señales sísmicas.

Estas señales tienen una duración de 180s, y están muestreados a 100Hz.

Los eventos se extrajeron de la base de datos de la red sísmica del IGC en formato

seed (www.iris.edu), a partir del cual y mediante el programa rdseed

(www.iris.edu), se crearon los archivos en formato sac, respectivos a cada

componente de cada estación.

Los archivos generados en sac se exportaron al formato ascii usando el programa

Geopsy (www.geopsy.org), con el fin de importarlos y procesarlos con un script

escrito en Matlab (Anexo 01).

Para la representación de las señales y el cálculo de la PSD de cada una de ellas,

se aplicó a las señales un filtro pasa altas Butterworth con una frecuencia de corte

de 1 Hz, ya que no hay señal útil por debajo de esta frecuencia.

Capitulo 03  

Análisis Espectral 44  

3.2 Calculo del espectrograma:

El espectrograma es una representación del contenido espectral de una señal en

forma de imagen. Esta última, se construye a partir de los espectros de potencia

que se calculan para todo el rango de frecuencias en cada fragmento de señal.

Los fragmentos de la señal se calculan a partir de una ventana temporal fija. Esta

ventana se va deslizando a lo largo del eje de tiempo de la señal con un solape del

50% entre cada una de ellas. Este proceso nos devuelve para cada ventana un

espectro de potencia.

Juntando estos tramos en orden obtenemos una imagen del espectro de potencia a

lo largo del tiempo en un registro y en función de la frecuencia.

En el eje de las abscisas de la figura se representa el tiempo, en el eje de las

ordenadas se representa la frecuencia, y la tercera dimensión clasificada por un

rango de color, corresponde a la amplitud espectral (fig. 3.01).

Para calcular el espectrograma

y la PSD se utilizó un script

escrito en Matlab, aplicando la

función ‘spectrogram’, que

permite calcular la Short-Time

Fourier Transform, STFT,

(Mitra, 2001; Oppenheim y

Schafer, 1989).

El espectrograma se calculó

mediante la aplicación de la

STFT a segmentos de la señal

de una longitud de 512 muestras (5.12 s) con una solape de segmentos del 50%.

Este proceso nos devuelve una matriz 3D con los parámetros de frecuencia,

tiempo y PSD. El resultado de este cálculo devuelve un mapa de color

representando el espectrograma de la señal en función del tiempo y la frecuencia

(fig. 3.01).

Figura 3.01: Ejemplo de un espectrograma de una señal sísmica.

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Análisis Espectral 45  

3.3 Resultados del análisis espectral:

En este apartado, se presentan algunos ejemplos de los espectrogramas de las

señales de terremotos y tiros de la zona de estudio; los resultados completos se

presentan en el anexo 02.

Con el fin de establecer un patrón de comparación para el análisis de los datos, se

trabajó inicialmente con los datos de la zona francesa de Luzenac, Ariege, y luego

se han comprobado los resultados con la región de Garraf, Barcelona.

La zona de Luzenac se considera como una referencia para este estudio,

principalmente por la localización de las explosiones dentro de la cantera de

Luzenac, y un buen número de terremotos localizados en un radio de 20 Km del

centro esta cantera.

Estas dos condiciones nos permiten tener controlados las condiciones iniciales

para las comparaciones, ya que todos los eventos están a la misma distancia de las

estaciones donde se registran, evitando así las alteraciones de las señales por el

efecto de sitio.

Para poder comparar las señales de los diferentes eventos, en cada estación, se

presenta una figura con las gráficas de la señal filtrada con un Butterworth, paso

alto de 1Hz, el espectrograma y la representación de la PSD. Esta representación

nos permite tener siempre una referencia de la amplitud de la señal, su forma y

duración. Estas informaciones son importantes para comparar dos señales

Figura 3.02: Ubicación de la zona de referencia para este estudio (Luzenac, Francia).

Capitulo 03  

Análisis Espectral 46  

equivalentes en potencia y en forma. Además de estas referencias, en la siguiente

tabla (tabla 3.03) se encuentra las informaciones relativas a los terremotos

seleccionando, código, latitud, longitud, día, mes, año, magnitud, profundidad

hora de origen, minutos y segundos.

Igual que la anterior tabla, en la tabla

3.04 se presentan las explosiones de la

cantera ubicada en Luzenac, Francia,

seleccionados para la comparación con

los terremotos. La posición de los tiros

se asume que está en la misma cantera,

las dimensiones de la cantera se reducen

a un ancho de 1 Km y una longitud de 2

Km (fig.2.03).

Código LAT_N LON_E Día Mes Año Mag Pro Hora Minutos Segundos l0105030 42.77 1.68 8 5 2001 1.1 4 23 47 08.7 l0105130 42.88 1.79 24 5 2001 0.8 6 5 28 35.3 l0106010 42.78 1.65 1 6 2001 1.6 4 14 5 49.3 l0106080 42.70 1.94 11 6 2001 1.1 12 2 11 08.3 l0107100 42.63 1.75 31 7 2001 0.2 5 19 46 10.0 l0111130 42.60 1.73 18 11 2001 0.4 0 20 22 12.3 l0209090 42.70 1.98 28 9 2002 0.5 4 1 49 46.7 l0303250 42.62 1.82 16 3 2003 0.7 4 11 32 00.4 l0307170 42.70 2.06 19 7 2003 1.5 4 4 40 42.8 l0310020 42.72 2.06 3 10 2003 3.0 5 23 40 19.4 l0404050 42.66 1.91 7 4 2004 -0.2 11 22 58 12.8 l0407220 42.78 1.92 21 7 2004 1.2 4 17 48 28.3 l0506040 42.74 1.76 3 6 2005 1.3 6 13 35 29.7 l0509030 42.69 2.01 10 9 2005 0.7 10 2 57 45.9 l0511160 42.77 1.91 17 11 2005 1.8 4 2 1 07.3 l0607100 42,75 1.60 16 7 2006 0.5 4 23 24 34.4 l0609090 42.74 1.66 7 9 2006 0.6 4 20 15 10.3 l0609110 42.73 1.64 10 9 2006 0.9 4 21 4 14.1 l0704060 42.66 1.70 10 4 2007 0.8 3 13 14 08.7 l0705370 42.72 2.02 25 5 2007 0.3 10 22 46 30.1 l0802140 42.67 2.10 12 2 2008 1.0 1 15 11 15.87 l0808570 42.72 1.98 24 8 2008 0.9 4 22 41 48.58 l0810240 42.70 2.03 17 10 2008 0.7 3 2 6 12.56 l0810280 42.69 2.03 17 10 2008 1.1 4 7 13 57.54 l0810320 42.71 2.03 18 10 2008 0.7 3 0 5 51.84 l0812260 42.77 1.63 13 12 2008 1.2 0 21 5 12.73 l0812490 42.70 1.64 24 12 2008 1.1 1 9 11 29.25 l0905140 42.77 1.71 7 5 2009 - 4 11 27 11.05 l1001230 42.72 1.99 26 1 2010 1.7 6 20 59 34.14

Tabla 3.03: detalle de los terremotos de la zona de Luzenac (radio de 20 Km)

1km

Figura 3.03: Cantera de Luzenac, Francia.

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Análisis Espectral 47  

En la siguiente figura (fig. 3.04), se presenta la distribución de los terremotos

alrededor de la localización de la cantera situada en Luzenac, Ariege, France.

Código Dia Mes Año E.W Hora Minutos segundos t20090602 02 06 2009 1.6 15 52 06 t20090604 04 06 2009 1.2 15 51 32 t20090610 10 06 2009 0.0 15 54 03 t20090617 17 06 2009 1.6 15 53 33 t20090618 18 06 2009 1.7 15 51 04 t20090624 24 06 2009 1.3 15 51 48 t20090626 26 06 2009 2.0 15 53 24 t20090629 29 06 2009 1.7 15 51 41 t20090715 15 07 2009 2.0 15 51 31 t20090721 21 07 2009 1.6 15 51 32 t20090723 23 07 2009 1.6 15 51 21 t20090728 28 07 2009 2.0 15 54 13 t20090730 30 07 2009 1.8 15 51 59 t20090803 03 08 2009 1.8 15 51 40 t20090809 09 08 2009 1.8 15 51 39 t20090810 10 08 2009 1.6 15 51 26 t20090811 11 08 2009 1.2 15 52 17 t20090812 12 08 2009 1.5 15 51 15 t20090813 13 08 2009 1.3 16 00 04 t20090814 14 08 2009 1.3 15 51 56 t20090824 24 08 2009 1.4 15 53 29 t20090825 25 08 2009 1.6 15 51 28 t20090901 01 09 2009 1.5 15 51 22 t20090902 02 09 2009 1.6 15 51 43 t20090903 03 09 2009 1.7 15 53 54 t20090904 04 09 2009 1.7 15 53 24 t20090907 07 09 2009 1.6 15 51 07

Tabla 3.04: Detalle de las explosiones de la cantera de la zona de Luzenac

10km

Figura 3.04: Distribución de los terremotos seleccionados alrededor de la cantera de Luzenac (Francia).

Capitulo 03  

Análisis Espectral 48  

Como se puede apreciar en la figura 3.02, los terremotos seleccionados para la

comparación, están concentrados alrededor de la cantera de Luzenac, a una

distancia máxima de 25 Km.

Terremotos de la zona de Luzenac

En la siguiente parte se presentan cuatro ejemplos de las señales registradas, los

espectrogramas y las representaciones de la PSD, de los terremotos registrados en

la estación de Llívia (CLLI).

Esta estación sísmica se eligió por ser la más próxima (39.28 km) a la zona de

Luzenac,

A continuación se presentan el código del evento sísmico (terremoto) registrado

en la estación CLLI y sus correspondientes graficas (señal, espectrograma y la

PSD). En cada tipo de grafica se representa las tres componentes de la estación, E,

N y Z, ordenadas de arriba hacia abajo.

l0105030

l0105130

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Análisis Espectral 49  

l0106010

l0106080 

Explosiones en canteras en la zona de Luzenac:

Igual que el apartado anterior, se presentan cuatro ejemplos de eventos sísmicos

artificiales (explosiones en la cantera de la zona de Luzenac), registrados en la

estación CLLI con sus correspondientes códigos y graficas (señal, espectrograma

y la PSD).

t20090602

 

Capitulo 03  

Análisis Espectral 50  

t20090604 

 

t20090610  

 

t20090618  

 

 

CAPITULO 04

Comparación Y Discusión De Los Resultados

 

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Comparación Y Discusión De Los Resultados 53  

4.1 Introducción:

En el siguiente capítulo, se presentan las formas de onda de las señales

registradas, los espectrogramas y las representaciones de la PSD, con el fin de

conseguir unos criterios fijos y fiables para discriminar entre los eventos sísmicos

producidos por las explosiones en canteras y los terremotos naturales. Una vez

fijados estos criterios, se determinan unos patrones para una identificación fácil y

precisa de los diferentes eventos sísmicos.

Para ello se compararon los espectrogramas y las representaciones de la PSD de

1219 señales para diferentes eventos símicos con el origen de la fuente bien

conocido en ambos casos, natural y artificial.

Para un mejor control de los parámetros de las comparaciones, de tal manera que

la única diferencia sea la naturaleza (origen) de los eventos, se contrastaron,

primero y de manera general, los eventos registrados por la misma estación

sísmica, para evitar cualquier alteración de la señal por efecto de sitio.

En segundo lugar, se compararon los eventos registrados por la misma estación y

con amplitudes de señal parecidas (el mismo rango de amplitudes con una

diferencia máxima de 100 cuentas).

Finalmente, después de revisar los resultados de los espectrogramas de todas las

señales estudiadas, se uniformizó la escala de colores de estas representaciones, y

se fijaron sus valores mínimos y máximos a -50 y +50. Estos valores aplicados

permiten resaltar la parte del espectro que nos proporciona más información en el

proceso de discriminación, sin perder detalles en la representación de la

distribución de la energía en el espectrograma.

4.2 Patrón de los eventos sísmicos naturales:

Cuando sucede un terremoto de origen natural, se genera una señal de alto

contenido de frecuencias. Al observar la representación del espectrograma de esta

Capitulo 04  

Comparación Y Discusión De Los Resultados 54  

señal, se puede comprobar que contiene energía en toda la gama de frecuencia que

se encuentra entre 1Hz y 50 Hz.

Esta energía se manifiesta con una intensidad que puede variar de tenue a muy

fuerte, pero siempre se refleja en toda la gama de frecuencias (1 Hz a 50Hz), sin

interrupción (sobre todo en los eventos registrados en las estaciones más cercanas

al terremoto). Esta representación de energía se inicia con la llegada de la onda P.

Estas observaciones, se han confirmado para todos los eventos registrados en las

diferentes estaciones sísmicas y para las distintas amplitudes de señales

registradas.

La intensidad de esta energía, se va atenuando al alejarse del foco del terremoto,

causada por la dispersión y absorción de la energía, a medida que la onda viaja en

el subsuelo. Esta atenuación se ve reflejada en la pérdida de intensidad de la

energía representada en los espectrogramas, afectando en primer lugar la energía

contenida en las altas frecuencias (dentro del rango correspondiente a la señal

sísmica, de 1Hz a 50 Hz).

Los ejemplos seleccionados en este capítulo, tanto eventos sísmicos de origen

natural como artificial, pertenecen a la zona de Luzenac, Francia, donde se conoce

la ubicación exacta de una cantera de talco.

Los tiros, además de los terremotos están todos dentro de una zona de 20 km

alrededor del centro de la cantera. Esta opción se tomó en cuenta para tener la

mínima variación de distancia/recorrido de la fuente del evento sísmico y la

estación que lo registra, y así, eliminan los cambios en los registros por el efecto

de sitio.

Cabe destacar en esta parte de resultados, que las estaciones sísmicas más

cercanas correspondientes a estos ejemplos, son las estaciones de Llívia (CLLI)

con 39.28 km, Fontmartina (CFON) con 126.85 km, Organyà (CORG) con 74.75

km y Bruguera (CBRU) con 65.21 km.

En las siguientes figuras, se presentan los ejemplos más representativos de los

diferentes tipos de señales registradas para eventos de origen natural y sus

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Comparación Y Discusión De Los Resultados 55  

respectivas representaciones de espectrogramas y PSD, donde se resalta los

aspectos más importantes en cada caso.

• Sismo local l0310020

Como primer ejemplo se observan las representaciones de las señales y sus

respectivos espectrogramas y PSD para cada uno de los registros de las tres

componentes obtenidos en las diferentes estaciones sísmicas para el mismo sismo

local, el l0310020. Este evento sísmico tiene las siguientes características:

Asímismo tiene una magnitud de 3, las señales registradas en las diferentes

estaciones es clara y fuerte (alrededor de 6 104 cuentas, donde 1 cuenta=1nm/s).

En este caso se presentan los registros obtenidos en las estaciones CBRU, CFON,

CLLI y CORG. Si se observa las diferentes representaciones de los

espectrogramas, se puede comprobar que las señales tienen energía en casi la

totalidad de la gama de frecuencia que corresponde a un seísmo (de 1Hz a 50Hz).

Esta observación se puede apreciar a partir de la llegada de la onda P (círculo en

negro), y se va atenuando en función del tiempo.

• Estación sísmica CBRU

Código LAT_N LON_E Día Mes Año Mag Pro Hora Minutos Segundos l0310020 42.72 2.06 3 10 2003 3.0 5 23 40 19.4

Tabla 4.01: Características generales del evento sísmico L0310020

Capitulo 04  

Comparación Y Discusión De Los Resultados 56  

• Estación sísmica CFON

• Estación sísmica CLLI

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Comparación Y Discusión De Los Resultados 57  

• Estación sísmica CORG

En los siguientes ejemplos se presentan las señales y sus respectivos

espectrogramas y PSD, para tres seísmos locales con magnitudes menores de 2, el

l0105030 (Mag. 1.1), l010130 (Mag. 0.8) y l0106010 (Mag. 1.6). Los seísmos

tienen una amplitud de señal menor que el ejemplo anterior (señales con unas

amplitudes mínimas de 200 cuentas y máximas de 2000 cuentas)

Aunque las señales registradas son de menor amplitud y en algunas ocasiones

están contaminadas con ruido (instrumental y ambiental), siempre se encuentra el

mismo patrón de espectro que corresponde a los eventos sísmicos naturales.

Igual que en el ejemplo anterior, se observa claramente en las estaciones más

próximas al seísmo, una presencia continua de la energía en toda la gama de

frecuencia que contiene la señal (zona marcada con un círculo negro).

Capitulo 04  

Comparación Y Discusión De Los Resultados 58  

• Sismo local l0105030

• Estación sísmica CLLI 

 

 

 

 

 

 

 

 

• Sismo local l0105130

• Estación sísmica CLLI 

 

 

 

 

 

 

 

 

 

Código LAT_N LON_E Día Mes Año Mag Pro Hora Minutos Segundos L0105030 42.77 1.68 8 5 2001 1.1 4 23 47 08.7

Tabla 4.02: Características generales del evento sísmico L0105030

Código LAT_N LON_E Día Mes Año Mag Pro Hora Minutos Segundos l0105130 42.88 1.79 24 5 2001 0.8 6 5 28 35.3

Tabla 4.03: Características generales del evento sísmico L0105130

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Comparación Y Discusión De Los Resultados 59  

• Sismo local l0106010

• Estación sísmica CLLI

 

 

 

 

 

 

 

 

 

 

 

• Estación sísmica CORG 

 

 

 

Código LAT_N LON_E Día Mes Año Mag Pro Hora Minutos Segundos l0106010 42.78 1.65 1 6 2001 1.6 4 14 5 49.3

Tabla 4.04: Características generales del evento sísmico L0106010

Capitulo 04  

Comparación Y Discusión De Los Resultados 60  

4.3 Patrón de los eventos sísmicos artificiales:

Los eventos sísmicos de origen artificial, generan unas señales sísmicas menos

ricas en frecuencias comparadas con las señales generadas por eventos sísmicos

de origen natural. Estas características se pueden comprobar al representar los

espectrogramas de dichas señales.

El principal patrón en este caso (eventos sísmicos de origen artificial), consiste en

la falta de energía en algunas franjas de frecuencia, que se observa en la

representación de la PSD de la señal que empieza a partir de la llegada de la onda

P. Este déficit de energía de espectro sucede principalmente alrededor de las

frecuencias de 20 Hz y 30 Hz.

En las siguientes figuras, se presentan diferentes ejemplos, resaltando los aspectos

más importantes en las representaciones de la PSD, con el fin de definir un patrón

para la identificación de los eventos sísmicos de origen artificial.

Los ejemplos que se seleccionados tienen diferentes amplitudes, que varían entre

200 cuentas y entre 2000 cuentas, siguiendo los mismos criterios de los ejemplos

de origen natural presentados en el apartado anterior.

En esta parte los eventos de origen artificial no tienen asignadas las magnitudes

que les corresponden, ya que en el momento del análisis se han descartado del

proceso de catalogar, y no se han procesado.

A diferencia de los ejemplos precedentes, los espectrogramas de las señales de los

eventos sísmicos de origen artificial tienen un déficit de energía a lo largo de la

gama de frecuencia (de 1 Hz a 50 Hz). Este déficit es independiente de las

amplitudes o forma de las señales, como se puede comprobar más adelante.

A continuación se presentan los códigos de los eventos sísmicos, un resumen de

sus características generales en forma de tablas, las gráficas de las señales, los

espectrogramas y las representaciones de la PSD. En los espectrogramas se han

marcado las zonas donde se concentra la energía de las señales (circulo negro), y

las franjas donde carecen de energía (Indicadas con flechas).

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Comparación Y Discusión De Los Resultados 61  

• Evento artificial t20090626

• Estación sísmica CEST 

• Estación sísmica CFON 

Código Día Mes Año E.W Hora Minutos segundos t20090626 26 06 2009 2.0 15 53 24 Tabla 4.05: Características generales del evento sísmico t20090626

Capitulo 04  

Comparación Y Discusión De Los Resultados 62  

• Estación sísmica CLLI 

 

 

 

 

 

 

 

• Evento sísmico artificial t20090629

• Estación sísmica CFON 

 

Código Día Mes Año E.W Hora Minutos segundos t20090629 29 06 2009 1.7 15 51 41 Tabla 4.06: Características generales del evento sísmico t20090629

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Comparación Y Discusión De Los Resultados 63  

• Evento artificial t20090618

• Estación sísmica CEST 

 

 

 

 

 

 

 

 

 

 

• Estación sísmica CFON 

 

 

 

 

 

 

 

 

 

 

 

 

Código Día Mes Año E.W Hora Minutos segundos t20090618 18 06 2009 1.7 15 51 04 Tabla 4.07: Características generales del evento sísmico t20090618

Capitulo 04  

Comparación Y Discusión De Los Resultados 64  

• Estación sísmica CLLI 

 

 

 

 

 

 

 

 

 

 

• Evento artificial t20090617

• Estación sísmica CEST 

 

 

 

 

 

 

 

 

 

 

 

 

Código Día Mes Año E.W Hora Minutos segundos t20090617 17 06 2009 1.6 15 53 33 Tabla 4.08: Características generales del evento sísmico t20090617

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Comparación Y Discusión De Los Resultados 65  

• Estación sísmica CFON 

 

 

 

 

 

 

 

 

 

 

• Estación sísmica CLLI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Capitulo 04  

Comparación Y Discusión De Los Resultados 66  

• Evento artificial t20090715

• Estación sísmica CFON 

 

 

 

 

 

 

 

 

 

• Evento artificial t20090728

• Estación sísmica CEST 

 

 

 

 

 

 

 

 

 

Código Día Mes Año E.W Hora Minutos segundos t20090715 15 07 2009 2.0 15 51 31 Tabla 4.09: Características generales del evento sísmico t20090715

Código Día Mes Año E.W Hora Minutos segundos t20090728 28 07 2009 2.0 15 54 13 Tabla 4.10: Características generales del evento sísmico t20090728

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Comparación Y Discusión De Los Resultados 67  

En el ejemplo anterior, se puede comprobar, que, aunque haya presencia de

energía entre 1 Hz y 40 Hz, existen unas franjas con un déficit de energía. En este

caso, estas franjas se centran en las frecuencias igual a 15 Hz, 20 Hz y 25 Hz.

• Evento artificial t20090602

• Estación sísmica CLLI 

En este ejemplo, se repite el mismo patrón en el espectrograma de la señal; existe

energía en toda la gama de frecuencia que va desde 1 Hz hasta los 48 Hz, pero con

un déficit de la misma en la franja de frecuencia entre 15 Hz y 20 Hz.

4.4 Discusión de los resultados:

A partir de los resultados obtenidos basados en las comparaciones entre forma de

señales, espectrogramas y las representaciones de la PSD, se ha comprobado que

la mejor forma de discriminar los eventos sísmicos de origen natural, de los de

origen artificial es utilizar la representación de los espectrogramas.

Código Día Mes Año E.W Hora Minutos segundos t20090602 02 06 2009 1.6 15 52 06

Tabla 4.11: Detalle de las explosiones de la cantera de la zona de Luzenac

Capitulo 04  

Comparación Y Discusión De Los Resultados 68  

Esta comparación entre los espectrogramas tiene que hacerse con las estaciones

más cercanas a los eventos de interés.

Normalizar la escala de colores de la representación del espectrograma a valores

fijos para todos los eventos (en el presente caso se fijó entre -50 y +50)

Los patrones de referencia son los siguientes:

• Eventos sísmicos de origen natural:

Para ilustrar el tipo de

patrón que debe tener el

espectrograma para la

identificación de un evento

sísmico de origen natural,

se presentan los siguientes

ejemplos para diferentes

amplitudes de señal sísmica

(fig. 4.12).

En los tres casos, se ve

claramente, que a partir de

la llegada de la onda P, hay

presencia de energía a lo

largo de toda la gama de frecuencia, entre 1 Hz y 50 Hz, sea cual fuera la fuerza

del evento (en este caso, en la figura 4.12, las magnitudes de los eventos son: 3,

1.1 y 0.8 respectivamente de arriba a abajo).

• Los eventos sísmicos

de origen artificial

Para los eventos sísmicos de

origen artificial, presentamos

ejemplos de los patrones que

mejor los identifica (fig.

4.13).

Figura 4.12: Ejemplo de patrones de los espectrogramas para eventos sísmicos de origen natural.

(a) (a) (a) 

(b) 

Figura 4.13: Ejemplo de patrones de los espectrogramas para eventos sísmicos de origen artificial.

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Comparación Y Discusión De Los Resultados 69  

Existen dos tipos de patrones, y ambos son independientes de la amplitud y la

forma de onda de los registros. En el primer patrón se tiene un espectrograma con

poca energía concentrada generalmente en las bajas frecuencias (fig.4.02.a). En el

segundo patrón, se tiene energía distribuida a lo largo de la gama de frecuencia

contenida entre 1 Hz y 50 Hz, pero con franjas de frecuencia que presentan un

déficit o falta de energía. Estas franjas suelen estar alrededor de 10, 20 y 30 Hz,

según los casos que se estudiaron en este trabajo.

4.5 Comprobación de los resultados:

En este párrafo se presentan algunos ejemplos de espectrogramas de eventos de

origen natural como artificial de la zona del Garraf. Estos ejemplos sirven para

comprobar el buen funcionamiento de los criterios adoptados en la determinación

de los patrones de discriminación.

Evento natural en la zona del Garraf:

La zona del Garraf consta de pocos seísmos, entre ellos el evento l05007140, que

se presenta como ejemplo de comprobación. En lo siguiente, se muestran las

señales registradas por las distintas estaciones y sus respectivos espectrogramas.

Como se puede comprobara a continuación, los espectrogramas de este evento

natural coinciden con los patrones descritos anteriormente.

Estación sísmica CGAR

Capitulo 04  

Comparación Y Discusión De Los Resultados 70  

Estación sísmica CAVN

Estación sísmica CEBR

Estación sísmica CFON

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Comparación Y Discusión De Los Resultados 71  

Estación sísmica CLLI

Evento artificial en la zona del Garraf

La zona del Garraf se considera como una zona rica en presencia de canteras, por consecuencia, existen varios registros identificado como explosiones. Uno de ellos, el t20091229, se presenta en esta parte, como ejemplo para comprobar que los espectrogramas de los eventos artificiales, siguán los mismos patrones identificados anteriormente.

En lo siguiente se presentan algunos ejemplos de señales registradas y espectrogramas para este evento artificial (t20091229).

Estación sísmica CAVN

Capitulo 04  

Comparación Y Discusión De Los Resultados 72  

Estación sísmica CBEU

Estación sísmica CBRU

Estación sísmica CFON

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Comparación Y Discusión De Los Resultados 73  

Estación sísmica CLLI

En resumen, para ambos casos, eventos natural y artificial, los espectrogramas

coinciden con los patrones determinados en los apartados anteriores.

4.6 Casos especiales:

En este apartado, se presentan dos casos interesantes, el primero, es el caso de un

evento artificial con solo una estación que presenta un patrón igual al de un evento

natural. El segundo caso, presenta una duda sobre su clasificación como evento

artificial, ya que presenta las características del patrón de un evento natural.

Primer caso

En este caso, el t201001111 de las 10:21hrs, coincide con los patrones de los

eventos artificiales para todas las estaciones menos en la estación CPAL. Como se

puede comprobar, que menos para esta estación, para todas las demás, la energía

de la señal se concentra en las bajas frecuencia a pesar de las amplitudes elevadas.

En las siguientes figuras se presentan las representaciones de las señales y

espectrogramas para estas estaciones (menos la CPAL).

Capitulo 04  

Comparación Y Discusión De Los Resultados 74  

Estación sísmica CAVN

Estación sísmica CBEU

Estación sísmica CFON

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Comparación Y Discusión De Los Resultados 75  

Estación sísmica CGAR

Para la estación CPAL, se encuentra la siguiente representación de la señal y del

espectrograma.

Comparando con los ejemplos ya vistos en los apartados anteriores, para esta

amplitud (500 cuentas), la energía de la señal tiene que distribuirse sobre toda la

gama de frecuencia, mientras que en este caso se corta antes de llegar a los 40 Hz.

Por otra parte, en las zonas indicadas con las flechas, se observa aéreas de menos

intensidad de energía.

Capitulo 04  

Comparación Y Discusión De Los Resultados 76  

Este caso se puede explicar por la presencia de ruido que coincidió con las parte

donde, en principio hay un déficit de energía.

Además, si este evento fuera natural se observaría una distribución de energía

continua sobre toda la gama de frecuencia, al menos en las estaciones que tengan

señales registradas con amplitudes elevadas.

Segundo caso

En el siguiente caso, se observa un evento clasificado como artificial (t20100127),

pero que la representación del espectrograma muestra una distribución continúa

de la energía en algunas estaciones a pesar de una amplitud pequeña. A demás de

estas estaciones, la estación CFON, tiene una buen registro de 500 cuentas, para el

cual, el espectrograma coincide con el patrón de un evento natural.

A continuación se presenta las estaciones que presentan estas observaciones.

Estación sísmica CFON

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Comparación Y Discusión De Los Resultados 77  

Estación sísmica CGAR

Estación sísmica CORG

Estación sísmica CPAL

Capitulo 04  

Comparación Y Discusión De Los Resultados 78  

De las observaciones hechas en las figuras anteriores del evento t20100127, cabe

la hipótesis que se haya clasificado mal este evento.

CAPITULO 05

Conclusiones Generales

 

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Conclusiones Generales 81  

Conclusiones Generales:

El objetivo principal de este trabajo consiste en conseguir unos patrones para

discriminar los eventos de origen natural y artificial. Para alcanzar este objetivo se

procedió a la recopilación y el análisis de los eventos sísmicos con epicentros

localizados en la zona de estudio (entre las latitudes 40.17º a 43.33º y las

longitudes -0.33º a 4.0º), para el periodo 1977-2007.

Inicialmente, se recopiló la información de 6810 eventos a partir de los datos

publicados en la web del IGC para el periodo 1977-2007. De este total, tan solo se

consideraron los que tienen valores determinados de magnitud y profundidad por

lo que el catálogo se limitó a 3055 eventos. El análisis del nuevo catalogo

depurado, nos permitió comprobar la mejora de la sensibilidad de la red a lo largo

de los años, y encontrar una magnitud de completitud (Mc) igual a 1.8 para el

periodo 1997-2007. Se limito el análisis de la Mc a este periodo, porque durante el

mismo, se adopto la magnitud de Richter para el cálculo de las magnitudes.

Mediante el cálculo de la relación entre los eventos registrados en horario diurno

y nocturno (Rq), se pudo determinar la posible contaminación del catalogo

elaborado por eventos artificiales. Gracias al mapa de distribución de este valor en

la área de estudio, se consiguió identificar dos grupos de zonas correspondientes a

dos niveles de Rq, 1.5>Rq>2 y 2≥Rq>3.5. La inspección visual de estas zonas

(Hautes Pyréneés, Francia (43.25, 0.5); Lleida, Cataluña (42.30, 1.5; 41.75, 0.75);

Ariège, Francia (42.75, 1.75); Tarragona, Cataluña (41.40, 1.00)), con Google

Earth, permitió identificar varias canteras de diferentes dimensiones.

Existen diferentes técnicas que utilizan los observatorios sismológicos para la

discriminación entre eventos naturales y artificiales (p. ej: localización de canteras

mediante fotos satélites, forma de onda, proporción entre las fases sísmicas,

estudio de la coda, análisis espectral, etc.). En este trabajo se aplico el método

espectral, motivados por el hecho que se puede obtener una distribución de la

energía de la señal en una gama de frecuencia determinada.

Capítulo 05  

Conclusiones Generales 82

Durante la elaboración de este trabajo se creó un script en Matlab para el cálculo y

la representación de los espectrogramas de las señales para ambos tipos de

eventos, natural como artificial, proporcionando así, una herramienta útil para la

tarea de comparación y discriminación.

Gracias al método aplicado se ha conseguido encontrar unos patrones que nos

facilitan la discriminación entre eventos de origen natural y artificial. Estos

patrones están basados en la comparación de la distribución de la energía de las

señales en los espectrogramas.

Para los eventos naturales, se observa, a partir de la llegada de la onda P, una

distribución completa de la energía de la señal a lo largo de toda la frecuencia

entre 1 Hz y 50 Hz. Esta energía se ve atenuada en función de las distancias

hipocentrales, afectando en primer lugar a la energía contenida en las altas

frecuencias.

Mientras que, para los eventos artificiales, esta misma distribución de energía, se

concentra en las bajas frecuencias, o si no, se distribuye sobre la gama de

frecuencia entre 1 Hz y 50 Hz, con un déficit de energía en algunas franjas de

frecuencias, para los casos estudiados están en 10Hz, 20 Hz y 30 Hz.

Este método se aplico a la zona de Luzenac, para la calibración y la definición de

los patrones de discriminación. A continuación se comprobó la eficacia de los

patrones determinados aplicándolos a la zona del Garraf.

Como conclusión final, el método utilizado en la Red Sísmica de Cataluña para

discriminar eventos naturales y artificiales se basa en el control visual y requiere

una gran experiencia en la identificación de las formas de ondas. La metodología

que se propone en este trabajo es una herramienta complementaria, de especial

interés en casos dudosos.

En un futuro se podría implementar este método en el proceso rutinario de análisis

y puede ser una buena alternativa para una discriminación rápida y sencilla de los

diferentes eventos.

Por otra parte, sería de gran interés, comprobar mediante este método los eventos

registrados en las zonas contaminadas (Rq>1.5), con el fin de reclasificar los

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma  

Conclusiones Generales 83  

eventos mal identificados (natural como artificial) y mejorar la calidad de los

catálogos.

 

Anexos

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 01 87

Anexo 01

En la siguiente parte se presenta el script escrito en Matlab para el análisis

espectral:

close all

clear all

%%Cargar todas las señales registradas para un evento

[filename, pathname, filterindex] = uigetfile( '*.ascii','Selecciona los ficheros para leer','MultiSelect', 'on');

nb=length(filename);

filenamen(1:nb-1)=filename(2:nb);

filenamen(nb)=filename(1);

nz=nb/3;

for nx=1:nz;

ns=nx*3;

%%Cargar las tres señales registradas por la estación

%componente E

sf1=char(filenamen(ns-2));

fin=sf1;

fid=fopen(fin,'r');

path(path,pathname);

eval(['load ' sf1]);

P1=find(sf1=='.');

if sf1(P1+1:P1+3)=='mat',

disp('No se puede abrir este tipo de fichero con esta función!!!')

disp('Usa solo load filename ...')

return

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 01 88

end

if isempty(P1)==0,

eval(['a1=' sf1(1:P1-1) ';']);

else

eval(['a1=' sf1 ';']);

end

%Creación de la matriz con los vectores x y t para dibujar la señal

x1=a1;

l1=length(x1);

dt1=0.01;

t1=(0:l1-1)*dt1;

%%Componente N

sf2=char(filenamen(ns-1));

fin=sf2;

fid=fopen(fin,'r');

path(path,pathname);

eval(['load ' sf2]);

P2=find(sf2=='.');

if sf2(P2+1:P2+3)=='mat',

disp('No se puede abrir este tipo de fichero con esta función!!!')

disp('Usa solo load filename ...')

return

end

if isempty(P2)==0,

eval(['a2=' sf2(1:P2-1) ';']);

else

eval(['a2=' sf2 ';']);

end

%creacion de la matriz con los vectores x y t para dibujar la señal

x2=a2;

l2=length(x2);

dt2=0.01;

t2=(0:l2-1)*dt2;

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 01 89

%%Componente Z

sf3=char(filenamen(ns));

fin=sf3;

fid=fopen(fin,'r');

path(path,pathname);

eval(['load ' sf3]);

P3=find(sf3=='.');

if sf3(P3+1:P3+3)=='mat',

disp('No se puede abrir este tipo de fichero con esta función!!!')

disp('Usa solo load filename ...')

return

end

if isempty(P3)==0,

eval(['a3=' sf3(1:P3-1) ';']);

else

eval(['a3=' sf3 ';']);

end

%creacion de la matriz con los vectores x y t para dibujar la señal

x3=a3;

l3=length(x3);

dt3=0.01;

t3=(0:l3-1)*dt3;

%%%Señales filtradas%%%

[b,a]=butter(6,1/50,'high');

fx1=filter(b,a,x1);

fx2=filter(b,a,x2);

fx3=filter(b,a,x3);

%%%calcular las frecuencias para de muestreo para los espectrogramas%%%

fs1=1/dt1;

fs2=1/dt2;

fs3=1/dt3;

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 01 90

%%%Específica el número de puntos de frecuencia que se usan para el cálculo%%%

%%%de la transformada discreta de Fourier%%%

n1=2^nextpow2(l1);

n2=2^nextpow2(l2);

n3=2^nextpow2(l3);

%%%calcular la fft%%%

Y1=fft(fx1,n1)/l1;

f1=fs1/2*linspace(0,1,n1/2);

Y2=fft(fx2,n2)/l2;

f2=fs2/2*linspace(0,1,n2/2);

Y3=fft(fx3,n3)/l3;

f3=fs3/2*linspace(0,1,n3/2);

mod1=abs(Y1(1:n1/2));

mod2=abs(Y2(1:n2/2));

mod3=abs(Y3(1:n3/2));

modQ1=mod1.^2;

modQ2=mod2.^2;

modQ3=mod3.^2;

%%% Dibujar las señales filtradas%%%

fig11=figure;

subplot(3,1,1), plot(t1,fx1);

title(['Señal filtrada con un pasa alta de 1Hz del ',num2str(sf1(1:P1-1))]);

xlabel('Time (s)'); ylabel('Counts');

grid

subplot(3,1,2), plot(t2,fx2);

title(['Señal filtrada con un pasa alta de 1Hz del ',num2str(sf2(1:P2-1))]);

xlabel('Time (s)'); ylabel('Counts');

grid

subplot(3,1,3), plot(t3,fx3);

title(['Señal filtrada con un pasa alta de 1Hz del ',num2str(sf3(1:P3-1))]);

xlabel('Time (s)'); ylabel('Counts');

grid

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 01 91

figname1=sf1(1:P1-1);

figname1(P1)=49;

saveas(fig11,[num2str(figname1)],'fig')

%%%Dibujar el Log del cuadrado del espectro%%%

fig4=figure;

subplot(3,1,1),plot(f1,log10(2*modQ1));

title(['Parte positiva del espectro ',num2str(sf1(1:P1-1))]);

xlabel('Frecuencia (Hz)'); ylabel('log10(2*|Y1(f)|^2)');

grid

subplot(3,1,2),plot(f2,log10(2*modQ2));

title(['Parte positiva del espectro ',num2str(sf2(1:P2-1))]);

xlabel('Frecuencia (Hz)'); ylabel('log10(2*|Y1(f)|^2)');

grid

subplot(3,1,3),plot(f3,log10(2*modQ3));

title(['Parte positiva del espectro ',num2str(sf3(1:P3-1))]);

xlabel('Frecuencia (Hz)'); ylabel('log10(2*|Y1(f)|^2)');

grid

figname4=sf1(1:P1-1);

figname4(P1)=52;

saveas(fig4,[num2str(figname4)],'fig')

%%%Dibujar el espectrograma %%%

fig5=figure;

subplot(3,1,1), spectrogram(fx1,512,256,n1,fs1,'yaxis');

title(['Spectrograma del ',num2str(sf1(1:P1-1))]);

caxis( [ -50 50 ] );

colorba

subplot(3,1,2),spectrogram(fx2,512,256,n2,fs2,'yaxis');

title(['Spectrograma del ',num2str(sf2(1:P2-1))]);

caxis( [ -50 50 ] );

colorbar

subplot(3,1,3),spectrogram(fx3,512,256,n3,fs3,'yaxis');

title(['Spectrograma del ',num2str(sf3(1:P3-1))]);

caxis( [ -50 50 ] );

colorbar

figname5=sf1(1:P1-1);

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 01 92

figname5(P1)=53;

saveas(fig5,[num2str(figname5)],'fig')

close all

%%%Dibujarla PSD en fet de la frecuencia%%%

%%% Dibujar la parte positive del espectro%%%

fig3=figure;

[S1,F1,T1]=spectrogram(fx1,512,256,n1,fs1);

sm1=mean(S1');

subplot(3,1,1),loglog(F1,abs(sm1'));

title(['PSD para ',num2str(sf1(1:P1-1))]);

xlabel('Frecuencia (Hz)'); ylabel('PSD');

grid

[S2,F2,T2]=spectrogram(fx2,512,256,n2,fs2);

sm2=mean(S2');

subplot(3,1,2),loglog(F2,abs(sm2'));

title(['PSD para ',num2str(sf2(1:P2-1))]);

xlabel('Frecuencia (Hz)'); ylabel('PSD');

grid

[S3,F3,T3]=spectrogram(fx3,512,256,n3,fs3);

sm3=mean(S3');

subplot(3,1,3),loglog(F3,abs(sm3'));

title(['PSD para ',num2str(sf3(1:P3-1))]);

xlabel('Frecuencia (Hz)'); ylabel('PSD');

grid

figname3=sf1(1:P1-1);

figname3(P1)=51;

saveas(fig3,[num2str(figname3)],'fig')

close all

end;

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 93

Anexo 02

En este anexo se presentan las señales, espectrogramas y PSD de todos los

eventos, naturales como artificiales, registrados en la zona de Luzenac.

1. Eventos naturales

• l0105030 Estación sísmica CFON

Estación sísmica CLLI

• l0105130

Estación sísmica CLLI

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 94

• l0106010 Estación sísmica CAVN

Estación sísmica CFON

Estación sísmica CLLI

Estación sísmica CORG

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 95

• l0106080: Estación sísmica CCLI

• l0107100: Estación sísmica CCLI

• l0111130: Estación sísmica CCLI

• l0209090 Estación sísmica CCLI

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 96

• l0303250: Estación sísmica CCLI

• l0307170

Estación sísmica CBRU

Estación sísmica CFON

Estación sísmica CLLI

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 97

• l0310020 Estación sísmica CAVN

Estación sísmica CBRU

Estación sísmica CFON

Estación sísmica CGAR

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 98

Estación sísmica CLLI

Estación sísmica CORG

• l0404050: Estación sísmica CCLI

• l0407220: Estación sísmica CCLI

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 99

• l0506040: Estación sísmica CCLI

• l0509030: Estación sísmica CCLI

• l0511160

Estación sísmica CFON

Estación sísmica CLLI

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 100

Estación sísmica CORG

Estación sísmica CSOR

• l0607100: Estación sísmica CEST

• l0609090

Estación sísmica CEST

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 101

Estación sísmica CLLI

• l0609110

Estación sísmica CEST

Estación sísmica CLLI

Estación sísmica CORG

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 102

Estación sísmica CORI

• l0704060

Estación sísmica CEST

Estación sísmica CLLI

Estación sísmica CMAS

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 103

• l0705370: Estación sísmica CCLI

• l0802140: Estación sísmica CCLI

• l0808570

Estación sísmica CEST

Estación sísmica CFON

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 104

Estación sísmica CLLI

• l0810240

Estación sísmica CEST

Estación sísmica CLLI

Estación sísmica CPAL

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 105

• l0810280 Estación sísmica CAVN

Estación sísmica CBEU

Estación sísmica CBRU

Estación sísmica CEST

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 106

Estación sísmica CFON

Estación sísmica CLLI

Estación sísmica CPAL

• l0810320

Estación sísmica CEST

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 107

Estación sísmica CFON

Estación sísmica CLLI

• l0812260: Estación sísmica CEST

• l0812490

Estación sísmica CAVN

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 108

Estación sísmica CEST

Estación sísmica CLLI

Estación sísmica CORG

Estación sísmica CORI

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 109

Estación sísmica CSOR

• l0905140

Estación sísmica CEST

Estación sísmica CLLI

• l1001230

Estación sísmica CEST

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 110

Estación sísmica CLLI

2. Eventos artificiales

En la siguiente parte de este anexo, se presentan las señales, espectrogramas y

PSD de los tiros registrados relacionados con la cantera de Luzenac.

• t20090602 Estación sísmica CBEU

Estación sísmica CBRU

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 111

Estación sísmica CEST

Estación sísmica CFON

Estación sísmica CLLI

Estación sísmica CSOR

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 112

Estación sísmica CTRE

• t20090602 Estación sísmica CBEU

Estación sísmica CBRU

Estación sísmica CSOR

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 113

Estación sísmica CEST

Estación sísmica CFON

Estación sísmica CLLI

Estación sísmica CORG

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 114

Estación sísmica CPAL

Estación sísmica CTRE

• t20090610

Estación sísmica CBEU

Estación sísmica CEST

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 115

Estación sísmica CFON

Estación sísmica CLLI

Estación sísmica CORG

Estación sísmica CPAL

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 116

Estación sísmica CSOR

Estación sísmica CTRE

Estación sísmica CAVN

Estación sísmica CBEU

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 117

Estación sísmica CBRU

Estación sísmica CCAS

Estación sísmica CEST

Estación sísmica CFON

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 118

Estación sísmica CLLI

Estación sísmica CORG

Estación sísmica CPAL

Estación sísmica CSOR

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 119

Estación sísmica CTRE

• t20090618 Estación sísmica CAVN

Estación sísmica CBEU

Estación sísmica CBRU

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 120

Estación sísmica CCAS

Estación sísmica CEST

Estación sísmica CFON

Estación sísmica CLLI

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 121

Estación sísmica CORG

Estación sísmica CPAL

Estación sísmica CSOR

Estación sísmica CTRE

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 122

• t20090624 Estación sísmica CAVN

Estación sísmica CBEU

Estación sísmica CBRU

Estación sísmica CCAS

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 123

Estación sísmica CEST

Estación sísmica CFON

Estación sísmica CLLI

Estación sísmica CORG

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 124

Estación sísmica CPAL

Estación sísmica CSOR

Estación sísmica CTRE

• t20090626

Estación sísmica CBEU

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 125

Estación sísmica CBRU

Estación sísmica CCAS

Estación sísmica CEST

Estación sísmica CFON

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 126

Estación sísmica CGAR

Estación sísmica CLLI

Estación sísmica CORG

Estación sísmica CPAL

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 127

Estación sísmica CSOR

Estación sísmica CTRE

Estación sísmica CAVN

• t20090629

Estación sísmica CAVNE

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 128

Estación sísmica CBEU

Estación sísmica CBRU

Estación sísmica CCAS

Estación sísmica CEST

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 129

Estación sísmica CFON

Estación sísmica CLLI

Estación sísmica CPAL

Estación sísmica CSOR

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 130

Estación sísmica CTRE

• t20090715 Estación sísmica CAVN

Estación sísmica CBEU

Estación sísmica CBRU

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 131

Estación sísmica CCAS

Estación sísmica CEST

Estación sísmica CFON

Estación sísmica CGAR

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 132

Estación sísmica CPAL

Estación sísmica CSOR

Estación sísmica CTRE

• t20090721

Estación sísmica CBEU

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 133

Estación sísmica CBRU

Estación sísmica CEST

Estación sísmica CFON

Estación sísmica CGAR

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 134

Estación sísmica CORG

Estación sísmica CPAL

Estación sísmica CSOR

Estación sísmica CTRE

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 135

• t20090723 Estación sísmica CAVN

Estación sísmica CBEU

Estación sísmica CBRU

Estación sísmica CEST

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 136

Estación sísmica CFON

Estación sísmica CGAR

Estación sísmica CGOR

Estación sísmica CPAL

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 137

Estación sísmica CSOR

Estación sísmica CTRE

• t20090728

Estación sísmica CAVN

Estación sísmica CBEU

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 138

Estación sísmica CBRU

Estación sísmica CCAS

Estación sísmica CEST

• t20090728

Estación sísmica CMAS

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 139

Estación sísmica CORG

Estación sísmica CPAL

Estación sísmica CSOR

Estación sísmica CTRE

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 140

• t20090730 Estación sísmica CAVN

Estación sísmica CBEU

Estación sísmica CBRU

Estación sísmica CCAS

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 141

Estación sísmica CEST

Estación sísmica CPAL

Estación sísmica CSOR

Estación sísmica CTRE

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 142

• t20090803 Estación sísmica CAVN

Estación sísmica CBEU

Estación sísmica CBRU

Estación sísmica CCAS

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 143

Estación sísmica CEST

Estación sísmica CORG

Estación sísmica CPAL

Estación sísmica CSOR

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 144

Estación sísmica CTRE

• t20090809

Estación sísmica CEST

Estación sísmica CFON

Estación sísmica CMAS

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 145

Estación sísmica CSOR

Estación sísmica CTRE

• t20090810

Estación sísmica CAVN

Estación sísmica CBEU

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 146

Estación sísmica CBRU

Estación sísmica CCAS

Estación sísmica CEST

Estación sísmica CFON

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 147

Estación sísmica CORG

Estación sísmica CPAL

Estación sísmica CSOR

Estación sísmica CTRE

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 148

• t20090811 Estación sísmica CAVN

Estación sísmica CBEU

Estación sísmica CBRU

Estación sísmica CCAS

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 149

Estación sísmica CEST

Estación sísmica CFON

Estación sísmica CORG

Estación sísmica CPAL

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 150

Estación sísmica CSOR

Estación sísmica CTRE

• t20090812

Estación sísmica CAVN

Estación sísmica CBEU

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 151

Estación sísmica CBRU

Estación sísmica CCAS

Estación sísmica CEST

Estación sísmica CFON

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 152

Estación sísmica CMAS

Estación sísmica CORG

Estación sísmica CPAL

Estación sísmica CSOR

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 153

Estación sísmica CTRE

• t20090813

Estación sísmica CBRU

Estación sísmica CEST

Estación sísmica CFON

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 154

Estación sísmica CTRE

• t20090814

Estación sísmica CAVN

 Estación sísmica CBEU 

 Estación sísmica CBRU 

 

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 155

Estación sísmica CCAS 

 Estación sísmica CEST 

 Estación sísmica CFON 

 Estación sísmica CMAS

   

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 156

Estación sísmica CORG 

 Estación sísmica CPAL 

 Estación sísmica CSOR 

 Estación sísmica CTRE 

   

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 157

• t20090824 Estación sísmica CAVN

Estación sísmica CBEU

Estación sísmica CBRU

Estación sísmica CCAS

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 158

Estación sísmica CEST

Estación sísmica CFON

Estación sísmica CGAR

Estación sísmica CLLI

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 159

Estación sísmica CORG

• t20090825

Estación sísmica CAVN

Estación sísmica CBEU

Estación sísmica CBRU

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 160

Estación sísmica CCAS

Estación sísmica CEST

Estación sísmica CFON

Estación sísmica CLLI

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 161

Estación sísmica CMAS

Estación sísmica CORG

Estación sísmica CPAL

Estación sísmica CSOR

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 162

Estación sísmica CTRE

• t20090901

Estación sísmica CAVN

Estación sísmica CBEU

Estación sísmica CBRU

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 163

Estación sísmica CCAS

Estación sísmica CEST

Estación sísmica CFON

Estación sísmica CGAR

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 164

Estación sísmica CLLI

Estación sísmica CORG

Estación sísmica CPAL

Estación sísmica CSOR

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 165

Estación sísmica CTRE

• t20090902 

Estación sísmica CBEU 

 Estación sísmica CBRU 

 Estación sísmica CCAS 

  

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 166

Estación sísmica CEST 

 Estación sísmica CFON 

 Estación sísmica CGAR 

 Estación sísmica CLLI 

   

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 167

Estación sísmica CORG 

 Estación sísmica CPAL 

 Estación sísmica CSOR 

 Estación sísmica CTRE 

   

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 168

• t20090903 Estación sísmica CAVN 

 Estación sísmica CBEU 

 Estación sísmica CBRU 

 Estación sísmica CCAS 

 

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 169

Estación sísmica CEST 

 Estación sísmica CFON 

 Estación sísmica CLLI 

 Estación sísmica CORG 

   

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 170

Estación sísmica CPAL 

 Estación sísmica CSOR 

 Estación sísmica CTRE 

 • t20090904 

Estación sísmica CAVN 

 

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 171

Estación sísmica CBEU 

 Estación sísmica CBRU 

 Estación sísmica CCAS 

 Estación sísmica CEST 

  

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 172

Estación sísmica CFON 

 Estación sísmica CLLI 

 Estación sísmica CORGE 

 Estación sísmica CPAL 

   

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 173

Estación sísmica CSOR 

 Estación sísmica CTRE 

 • t20090907 

Estación sísmica CBRU 

 Estación sísmica CCAS 

 

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 174

Estación sísmica CEST 

 Estación sísmica CFON 

 Estación sísmica CLLI 

 Estación sísmica CORG 

   

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Anexo 02 175

Estación sísmica CPAL 

 Estación sísmica CSOR 

 Estación sísmica CTRE 

   

 

 

 

 

 

 

   

 

 

 

Bibliografía

 

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Bibliografía 179

Bibliografía

• Agnew D. C., 1990. The use of time-of-day seismicity maps for

earthquake/explosion discrimination by local networks, with an application to the

Seismicity of San Diego County. Bulletin of the Seismological Society of

America; v. 80; no. 3; p. 747-750.

• Aki K., 1965. Maximum likelihood estimate of b in the formula log N_a_bM and

its confidence limits, Bull. Earthq. Res. Inst. Tokyo Univ.43, 237–239.

• Allmann B. P., Shearer P. M., and Hauksson E., 2008. Spectral Discrimination

between Quarry Blasts and Earthquakes in Southern California. Bulletin of the

Seismological Society of America, Vol. 98, No. 4, pp. 2073–2079.

• Bender B., 1983. Maximum likelihood estimation of b-values for magnitude

grouped data, Bull. Seism. Soc. Am. 73, 831–851.

• Carr D. B. and Garbin H. D., 1998. Discriminating ripple-fired explosions with

high-frequency (> 16 Hz) data. Bulletin of the Seismological Society of America;

v. 88; no. 4; p. 963-972

• Chernobay I.P. and Gabsatarova I.P., 1999. Source classification in the

Northern Caucasus. Physics of the Earth and Planetary Interiors, Volume

113, Number 1, pp. 183-201(19).

• Chouliaras G., 2009. Investigating the earthquake catalog of the National

Observatory of Athens. Nat. Hazards Earth Syst. Sci., 9, 905–912.

• Denny M., Goldstein P., Mayeda K. and Walter W., 1995. Seismic Results

from DOE'S Non-Proliferation Experiment: A Comparison of Chemical and

Nuclear Explosions. North Atlantic Treaty Organization Advanced Study Institute

Meeting Alvor, Algarve, Portugal January 23-Febreary 2.1995.

• Gutenberg R. and Richter C. F., 1944. Frequency of earthquakes in California.

Bulletin of the Seismological Society of America, 34, 185-188.

• Habermann R. E., 1991. Seismicity rate variations and systematic changes in

magnitudes in teleseismic catalogs, Tectonophysics 193, 277–289.

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Bibliografía 180

• Habermann R. E., and Creamer F., 1994. Catalog errors and the M8 earthquake

prediction algorithm, Bull. Seism. Soc. Am. 84, 1551–1559.

• Habermann R.E., 1987.Man-made changes of Seismicity rates, Bull. Seism. Soc.

Am., 77, 141- 159.

• Horasan G., Güney A. B., Küsmezer A., Bekler F., Ögütcü Z., Musaoglu N.,

2009. Contamination of seismicity catalogs by quarry blasts: An example from

Istanbul and its vicinity, northwestern Turkey. Journal of Asian Earth Sciences 34

90–99.

• IGC, 2009. Butlletí seismologic 2008. Institut Geològic de Catalunya.

• Khalturin V. I., Rautian T. G. and Richards P. G., 1998. The seismic signal

strength of chemical explosions. Bulletin of the Seismological Society of America;

v. 88; no. 6; p. 1511-1524

• Kushnira A.F., Troitsky E.V., Haikin L.M. and Dainty A., 1999. Statistical

classification approach to discrimination between weak earthquakes and quarry

blasts recorded by the Israel Seismic Network. Physics of the Earth and Planetary

Interior, Volume 113, pp 161-182.

• Lin G., Shearer P. and Fialko Y., 2006. Obtaining Absolute Locations for

Quarry Seismicity Using Remote Sensing Data. Bulletin of the Seismological

Society of America, Vol. 961, No. 2, pp. 722-728.

• Mackey K. G., Fujita K., Gounbina L. V., Koz'min B. M., Imaev V. S.,

Imaeva L. P. and Sedov B. M., 2003. Explosion Contamination of the Northeast

Siberian Seismicity Catalog: Implications for Natural Earthquake Distributions

and the Location of the Tanlu Fault in Russia. Bulletin of the Seismological

Society of America; v. 93; no. 2; p. 737-746.

• Mitra, S. K., 2001. Digital Signal Processing. A Computer-Based Approach. 2nd

Ed. McGraw-Hill, N.Y..

• Ogata Y. and Katsura K., 1993. Analysis of temporal and spatial heterogeneity

of magnitude frequency distribution inferred from earthquake catalogs, Geophys.

J. Int. 113, 727–738.

• Olivera C., Fleta J., Susagna T., Figueras S., Goula X. y Roca A., 2003.

Sismicidad y deformaciones actuales en el nordeste de la península Ibérica. Física

de la Tierra, 15, 111-144.

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Bibliografía 181

• Olivera C., Redondo E., Lambert J., Melis Riera Ay Roca A., 2006. Els

terratrèmols dels segles XIV i XV a Catalunya. Institut Cartogràfic de Catalunya.

• Oppenheim A.V. and. Schafer R.W, 1989. Discrete-Time Signal Processing.

Prentice-Hall, Englewood Cliffs, NJ, pp. 713-718.

• Reiter, L., 1990. Earthquake hazard analysis: issues and insights, Columbia

University Press, New York, 254 pp.

• Roca A., Goula X., Olmedillas J.C., Olivera C., Susagna T., Figueras S. y

Fleta J., 2000. Nueva red sísmica de Cataluña con sensores de banda ancha y

comunicación vía satélite en tiempo real. 2ª Asamblea Hispano- Portuguesa de

Geodesia y Geofísica. Portugal. pp. 207-208.

• Rydelek P. A. and Sacks I. S., 1989. Testing the completeness of earthquake

catalogs and the hypothesis of self-similarity, Nature 337, 251–253.

• Souriau A. and Pauchet H., 1998. A new synthesis of Pyrenean seismicity and

its tectonic implications. Tectonophysics, 290: 221-244.

• Susagna T. I. y Goula X., 1999. Catàleg de sismicitat. Vol. I de l Atlas sísmic de

Catalunya. Institut Cartogràfic de Catalunya.

• Susagna T., Roca A., Goula X. y Batlló J., 1994. Analysis of macroseismic and

instrumental data for the study of the November 19, 1923 earthquake in the Aran

Valley (Central Pyrenees). Natural Hazards 24 (10), 7-17.

• Tarvainen M., 1999. Recognizing explosion sites with a self-organizing network

for unsupervised learning. Physics of the Earth and Planetary Interiors, Volume

113, pp. 143-154.

• Ursino A., Langer H., Scarfi L. Di Graziai G. and Cresta S., 2001.

Descrimination of quarry blasts from tectonic microearthquaques in the Hyblean

plateau (Southeastern Sicily). ANNALI DI GEOFÍSICA. VOL. 44. N. 4.

• Utsu T., 1965. A method for determining the value of b in a formula log n=a - bM

showing the magnitude frequency for earthquakes, Geophys. Bull. Hokkaido

Univ. 13, 99–103.

• Walter W. R., Matzel E., Pasyanos M. E., Harris D. B., Gok R. and Sean

Ford R., 2007. Empirical observations of earthquake-explosion discrimination

using P/S ratios and implications for the sources of explosion S-waves. 29th

Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

Technologies.

Discriminación Entre Eventos Símicos Naturales Y Artificiales Mediante El Espectrograma 

Bibliografía 182

• Walter W. R., Mayeda K. M., Goldstein P., Patton H. J., Jarpe S. and Glenn

L., 1995 Regional Seismic Discrimination Research at LLNLl.  the Russian

American Workshop on Nonproliferation, August 28-September 1, 1995,

Snezhinsk, Russia.

• Wiemer S. and Baer M., 2000. Mapping and Removing Quarry Blast Events.

Short Notes. Seismicity Catalogs Bulletin of the Seismological Society of

America, 90, 2, pp. 525–530.

• Wiemer S. and Wyss M., 2000. Minimum Magnitude of Completeness in

Earthquake Catalogs: Examples from Alaska, the Western United States, and

Japan. Bulletin of the Seismological Society of America, 90, 4, pp. 859–869.

• Wiemer S. and Zúñiga F. R., 1994. ZMAP, EOS Transactions, 75, American

Geophysical Union, 1994.

• Wiemer S., 2001. A software package to analyse seismicity: ZMAP. Seismol.

Res. Lett., 72, 3, 373-382.

• Woessner J. and Wiemer S., 2005. Assessing the Quality of Earthquake

Catalogues: Estimating the Magnitude of Completeness and Its Uncertainty.

Bulletin of the Seismological Society of America, Vol. 95, No. 2, pp. 684–698.

• Zuñiga F.R. and Wiemer S., 1999.Seismicity patterns: are they always related to

natural causes?, Pageoph, 155, 713-726.