Diversidad del elemento transponible Galileo en...

45
1 Diversidad del elemento transponible Galileo en especies de Drosophila (Diptera, Drosophilidae) del grupo repleta Trabajo de investigación del Master en Genética Avanzada Curso 2009-2010 Andrea Acurio Director: Dr. Alfredo Ruiz Co-director: Dr. Deodoro C. S. G. Oliveira Facultad de Biociencias Departamento de Genética y Microbiología ________________ ________________ __________________ Lic. Andrea Acurio Dr. Alfredo Ruiz Dr. Deodoro C.S.G. Oliveira

Transcript of Diversidad del elemento transponible Galileo en...

Page 1: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

1

Diversidad del elemento transponible Galileo en especies de

Drosophila (Diptera, Drosophilidae) del grupo repleta

Trabajo de investigación del Master en Genética Avanzada

Curso 2009-2010

Andrea Acurio

Director: Dr. Alfredo Ruiz

Co-director: Dr. Deodoro C. S. G. Oliveira

Facultad de Biociencias

Departamento de Genética y Microbiología

________________ ________________ __________________

Lic. Andrea Acurio Dr. Alfredo Ruiz Dr. Deodoro C.S.G. Oliveira

Page 2: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

2

Resumen

Los elementos transponibles (TE) constituyen una porción importante del genoma de

practicamente todos los organismos vivientes, son poderosos facilitadores de evolución

genómica e influyen en la diversidad fenotípica. El elemento transponible Galileo,

descubierto en Drosophila buzzatii, es miembro de la superfamilia P de transposones de

DNA. Este TE ha demostrado tener un papel causal en la generación de inversiones en

poblaciones naturales de Drosophila y su presencia en 6 de las 12 especies secuenciadas de

Drosophila sugiere una contribución importante a la evolución de estos dípteros. Las copias

de Galileo encontradas en el genoma de D. mojavensis fueron clasificadas en cuatro grupos

o subfamilias denominadas C, D, E y F.

Drosophila buzzatii y D. mojavensis pertenecen al grupo de especies repleta, endémico de

regiones áridas y semiáridas del continente americano. Este grupo de especies representa

un excelente modelo biológico para los estudios de evolución debido a su alta diversidad,

cerca de 100 especies descritas. Para estudiar la distribución y diversidad del elemento

transponible Galileo en el grupo repleta se realizó un muestreo representativo de los

subrupos de especie hydei, mercatorum, mulleri y repleta. Se analizaron 98 muestras de 49

especies del grupo repleta, 4 del grupo nannoptera y 1 del grupo virilis. Mediante PCR se

amplificaron las secuencias de la transposasa de Galileo, que luego fueron clonadas y

secuenciadas. La amplificación fue positiva para 51 muestras de 16 especies de Drosophila

del grupo repleta. Con estos datos se construyó una filogenia que se comparó con la

filogenia de las especies. Los datos obtenidos extienden la distribución de Galileo dentro

del grupo repleta y sugieren una diversificación vertical dentro del linaje de repleta.

Page 3: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

3

Página

I. INTRODUCCIÓN

1. Los elementos transponibles 4

2. El elemento transponible Galileo 5

3. El grupo de especies repleta 7

4. Objetivos 8

II. MATERIALES Y MÉTODOS

1. Obtención de muestras 9

2. Diseño de cebadores 12

3. Extracción de DNA genómico 13

4. Reacción en cadena de la polimerasa 14

5. Visualización del fragmento obtenido 15

6. Clonación del producto de PCR 15

7. Análisis de las secuencias amplificadas 17

8. Construcción de la filogenia 18

III. RESULTADOS

1. Amplificación por PCR de las copias de Galileo 20

2. Identidad de las secuencias amplificadas 26

3. Relaciones filogenéticas 32

IV. DISCUSIÓN

1. Galileo en el grupo de especies repleta 34

2. Dinámica de Galileo en el grupo repleta 36

3. La transposasa de Galileo 37

4. Inserciones encontradas en Galileo 38

V. CONCLUSIONES Y PERSPECTIVAS 39

VI. BIBLIOGRAFÍA 40

VII. AGRADECIMIENTOS 45

Page 4: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

4

I. INTRODUCCIÓN

1. Los elementos transponibles

Los elementos transponibles (TE, transposable elements) representan un

componente importante en el genoma de casi todos los organismos. La proporción de

TE en el genoma varía desde un 4% en la levadura Saccharomyces cerevisiae a más del

70% en algunas plantas y anfibios. En el genoma humano la proporción de TE es del

45% (Venner et al. 2009). Se considera que por disfunción génica o pérdida de

regulación, los TE son responsables de alrededor del 1% de enfermedades humanas

(Kazazian 1998).

Los TE son capaces de movilizarse dentro del genoma del hospedador y pueden

insertarse en genes o elementos reguladores, alterar la función de un gen o inducir

reordenaciones cromosomicas (Venner et al. 2009). La mayoría de inserciones de TE

son detrimentales, otras son selectivamente neutrales y unas pocas pueden ser

beneficiosas debido a su capacidad mutagénica, pudiendo contribuir así a la diversidad

del genoma hospedador. En algunos casos los TE han sido "domesticados" actuando

como genes o elementos reguladores de genes por lo que constituyen un recurso de

innovación génica para el organismo (Medstrand et al. 2005, Brandt et al. 2005).

En base a su mecanismo de transposición, los TE pueden ser divididos en dos

clases: La clase I comprende retrotransposones que se mobilizan a través de

mecanismos mediados por RNA (Berg 1989) y los de clase II que se movilizan a través

de mecanismos mediados por DNA y se multiplican usando la maquinaria de

replicación de la célula hospedadora (McDonald 1993). Dependiendo de su habilidad

Page 5: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

5

para dirigir su transposición, cada clase de TE puede contener dos tipos de copias:

autónomas y no autónomas.

Los elementos autónomos tienen marcos abiertos de lectura (ORF, open reading

frames) que codifican las proteínas requeridas para la transposición en el genoma del

hospedador. En contraste los elementos no autónomos no codifican proteínas de

tranposición pero pueden transponerse utilizando la maquinaria de las copias

autónomas. La integración de casi todos los TE da como resultado la duplicación de una

secuencia genómica corta del sitio diana (TSD, target site duplications) en el sitio de

inserción. Los tranposones de DNA usualmente tienen una estructura simple con

repeticiones terminales invertidas (TIR, terminal inverted repeats) que flanquean un

sólo gen que codifica la tranposasa.

La transposasa se acopla de manera específica a los extremos de su elemento

codificante (elemento autónomo) y a los extremos de los miembros de las familias no

autónomas (Wessler 2006). Una vez acoplado la transposasa inicia la reacción de corta

y pega en donde el elemento es escindindo del sitio donante (generando un espacio

vacío) y se inserta en un nuevo sitio del genoma.

Uno de los rasgos más sobresalientes de los TE es su capacidad de atravesar los

límites entre especies e insertarse en nuevos genomas. El proceso conocido como

Transferencia Horizontal (TH) se define por la transferencia de material genético entre

especies. La TH ha sido propuesta como un paso escencial en el ciclo de vida de los

transposones de DNA (Silva et al. 2004).

2. El elemento transponible Galileo

Galileo fue descubierto en Drosophila buzzatii, en donde se caracterizaron copias

no autónomas y se clasificó a este elemento como tipo foldback debido a sus largas TIR

Page 6: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

6

(Cáceres et al. 2001, Casals et al. 2003). En un estudio posterior (Casals et al. 2005),

copias de Galileo fueron detectadas en varias especies del complejo buzzatii, aunque no

en especies más alejadas como D. mulleri o D. repleta. Más adelante Marzo et al.

(2008) caracterizaron copias completas o casi completas de Galileo en D. buzzatii y en

el genoma de otras 6 especies de Drosophila secuenciadas, D. ananassae, D. willistoni,

D. pseudoobscura, D. persimilis, D. virilis y D. mojavensis (Figura 1). Las copias de

Galileo obtenidas tenían una longitud de 4,4 a 6 kb y codificaban una transposasa de

889-938 aa. En base a la identidad aminoacídica de la transposasa con la de los

elementos P y 1360 de D. melanogaster, Galileo fue re-clasificado como miembro de la

superfamilia P de transposones de DNA que se transpone mediante un mecanismo de

tipo corta-y-pega. Según Marzo et al. (2008), Galileo está (o ha estado recientemente)

activo en el genoma de D. buzzatii y también en otras especies del género Drosophila,

su más reciente evento de transposición fue estimado en alrededor de 0.2 millones de

años.

Figura 1. Galileo en Drosophila. A. Copia de Galileo en el genoma de D.buzzatii.

B. Copias más largas encontradas en los genomas de 6 especies secuenciadas.

Tomado y modificado de Marzo et al. (2008).

Page 7: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

7

Las copias de Galileo encontradas en el genoma de D. mojavensis fueron

clasificadas, en base a la identidad de las secuencias de los TIR, en cuatro grupos o

subfamilias, C, D, E y F. La divergencia promedio entre las copias dentro de los grupos

C-F fue estimada en 2,2%, 2,3%, 2,4% y 8,9%, respectivamente, indicando un tiempo

de diversificación de 1,4 a 5,5 millones de años para las subfamilias (Marzo et al.

2008).

Se conoce que Galileo está implicado en la generación de al menos tres inversiones

polimórficas en poblaciones de D. buzzatii mediante recombinación ectópica (Cáceres

et al. 2001, Casals et al. 2003, Delprat et al. 2009). Además Galileo ha sido encontrado

en el genoma de otras especies de Drosophila que son polimórficas para inversiones

cromosómicas, entre ellas están las más polimórficas de todo el género (D. willistoni y

D. persimilis). Esta observación abre la posibilidad de que Galileo esté implicado en la

generación de inversiones cromosómicas en otras especies del género Drosophila.

3. El grupo de especies repleta de Drosophila

El género Drosophila representa un importante organismo modelo no sólo para

entender la evolución genómica sino también para investigaciones experimentales

comparativas, debido a que tiene una filogenia bien establecida y extensa literatura en

Genética, Etología y Ecología. El grupo de especies repleta, endémico de regiones

áridas y semiáridas de Norte y Sudamérica, es uno de los grupos más extensos y

complejos dentro del género Drosophila, con más de 100 especies (Bächli 2010). Está

dividido en seis subgrupos, fasciola, inca, hydei, mercatorum, mulleri y repleta, en base

a inversiones cromosómicas y caracteres morfológicos (Wasserman 1960, 1982, 1992,

Vilela 1983, Rafael & Arcos 1989).

Page 8: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

8

El grupo repleta utiliza una amplia variedad de nichos ecológicos que van desde

una alta especificidad, como ciertas especies del subgrupo mulleri que utilizan tejidos

de cactus necrotizados como único sitio de oviposición y cortejo, hasta especies más

generalistas de los subgrupos hydei, mercatorum y repleta (Markow & O’Grady 2006).

4. Objetivos

El objetivo principal de esta investigación es conocer la distribución y la dinámica

evolutiva del elemento transponible Galileo dentro de las especies de Drosophila

del grupo repleta.

Los objetivos específicos son:

1. Determinar en que especies de Drosophila del grupo repleta se encuentra

Galileo para conocer mejor su distribución.

2. Construir una filogenia con las copias de Galileo que pudiesen encontrarse en el

genoma de las especies del grupo repleta para inferir su historia evolutiva.

3. Comparar la filogenia obtenida con la filogenia de las especies del grupo repleta

con la finalidad de detectar posibles casos de transferencia horizontal.

Page 9: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

9

II. MATERIALES Y MÉTODOS

1. Obtención de muestras

Se trató de incluir el mayor número de especies posibles para obtener una muestra

representativa del grupo de especies repleta. Se analizaron 92 muestras de los

subgrupos mulleri, hydei, mercatorum y repleta. Además se incluyeron 5 muestras del

grupo nannoptera que comparte el nicho ecológico con especies cactófilas del grupo

repleta y 1 muestra del grupo virilis, el grupo filogenéticamente más cercano a repleta.

En total se analizaron 98 muestras de 49 especies (Tabla 1). La obtención de las

muestras se realizó mediante colectas, donaciones y algunas fueron cepas de stock

centers. Los especímenes de localidades ecuatorianas, se colectaron con trampas

plásticas y cebo de Opuntia ficus-indica con levadura de cerveza Saccharomyces

cerevisiae. La identificación taxonómica de estas muestras se realizó mediante

caracteres morfológicos externos y el análisis de la genitalia de los machos (Figura 2).

Figura 2. Caracteres morfológicos utilizados para la identificación taxonómica: a.

último segmento abdominal, b. arco genital y edeago, c. ovipositor y espermatecas, d.

palpo labial, e. número de ramas de la arista, f. peine sexual, g. venación alar, h. patrón

de coloración del torax, i. patron de coloración del abdomen.

Page 10: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

10

Tabla1. Datos de colección disponibles de las especies utilizadas en este estudio.

Código Especie Localidad/Pais Colector/ Año

GAL001 D. aldrichi Zuata/Venezuela Fontdevila/1980

GAL002 D. arizonae Tomatlan /Méjico Heed/1981

GAL003 D. arizonae Punta Onah/Méjico Heed/1981

GAL005 D. koepferae Cébila/Argentina Fontdevila et al. /1981

GAL007 D. martensis Guaca/Venezoela Cerda/1984

GAL008 D. mercatorum Comarada/Bolivia Fontdevila et al./1982

GAL009 D. mojavensis Punta Onah/Méjico Heed/1981

GAL010 D. mulleri Panuco/Méjico Richardson/1998

GAL011 D. mayaguana Port Henderson/Jamaica Thomas et al./ 1983

GAL012 D. buzzatii España

GAL015 D. stalkeri St. Petersburg/U.S.A. Bowling G. Stock C/1990

GAL016 D. starmeri Rio Hacha/Colombia Ordoñez/1996

GAL018 D. uniseta Salamanca/Colombia Ordoñez/1990

GAL019 D. virilis ― UMEA Stock C.

GAL020 D. venezolana Los Roques/Venezuela Cerda/1984

GAL021 D. wheeleri Ejido Uruapan/Méjico Heed et al. /1979

GAL023 D. mojavensis Catalina I./U.S.A. 2002

GAL024 D. arizonae Punta Onah/Méjico Etges et al./ 2007

GAL025 D. wheeleri Punta Onah/Méjico Etges et al./ 2007

GAL026 D. arizonae San Quintin/Méjico Etges et al./ 2008

GAL027 D. wheeleri Catalina Island/U.S.A. Counteman/2004

GAL028 D. arizonae Tomatlan/Méjico Heed/1982

GAL029 D. arizonae Vaquerias/Méjico Etges et al./ 1997

GAL030 D. navojoa Chamela/Méjico Etges et al./ 1997

GAL031 D. mojavensis Santiago/Méjico Etges et al./ 1996

GAL032 D. aldrichi Hatulco//Méjico Etges et al./ 2002

GAL033 D. mojavensis Punta Onah/Méjico Etges et al./ 2007

GAL034 D. mojavensis Punta Onah/Méjico Armella et al./ 1996

GAL035 D. mojavensis San Quintin/Méjico Etges et al./ 2008

GAL036 D. aldrichi Zapilote/Méjico Etges et al./ 1998

GAL037 D. mojavensis Providence M./U.S.A. Etges et al./ 1996

GAL038 D. mettleri Sonora/Méjico Dros. Stock Center/1996

GAL039 D. mercatorum Tucson/U.S.A. Dros. Stock Center/2005

GAL040 D. anceps Michoacan /Méjico Dros. Stock Center/1998

GAL041 D. borborema Bahia/Brasil Dros. Stock Center/1974

GAL042 D. fulvimacula Veracruz/Méjico Dros. Stock Center/2002

GAL043 D. longicornis Tucson/U.S.A. Dros. Stock Center/2001

GAL044 D. hydei Sonora/Méjico Dros. Stock Center/2006

Page 11: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

11

GAL045 D. richardsoni TortolaIsland Dros. Stock Center

GAL046 D. straubae Sigus Beach/Cuba Dros. Stock Center

GAL047 D. ritae Puebla/Méjico Dros. Stock Center/1991

GAL052 D. hamatofila Superstition /U.S.A. Dros. Stock Center/2005

GAL053 D. hexastigma Puebla/Méjico Dros. Stock Center/1997

GAL054 D. paranaensis Chiapas/Méjico Dros. Stock Center/2002

GAL055 D. peninsularis Bath/Jamaica Dros. Stock Center/1957

GAL056 D. meridiana Canal Zone/Panama Dros. Stock Center/1958

GAL057 D. neorepleta Jalisco/Méjico Dros. Stock Center/2004

GAL058 D. mercatorum Palmira /Colombia Dros. Stock Center

GAL059 D. mercatorum Campo Grande/Brasil Dros. Stock Center

GAL082 D. pachea Las Bocas/Méjico Ruiz et al./ 2009

GAL083 D. pachea Punta Onah/Méjico Ruiz et al./ 2009

GAL084 D. nigrospiracula Las Bocas/Méjico Ruiz et al./ 2009

GAL085 D. eremophila Las Bocas/Méjico Ruiz et al./ 2009

GAL086 D. navojoa Las Bocas/Méjico Ruiz et al./ 2009

GAL088 D. huckinsi Las Bocas/Méjico Ruiz et al./ 2009

GAL089 D. spenceri Las Bocas/Méjico Ruiz et al./ 2009

GAL090 D. mojavensis Punta Onah/Méjico Ruiz et al./ 2009

GAL091 D. mojavensis El Choyudo/Méjico Ruiz et al./ 2009

GAL092 D. hydei Las Bocas/Méjico Ruiz et al./ 2009

GAL093 D. hydei Punta Onah/Méjico Ruiz et al./ 2009

GAL094 D. hydei El Choyudo/Méjico Ruiz et al./ 2009

GAL095 D. arizonae Las Bocas/Méjico Ruiz et al./ 2009

GAL096 D. arizonae El Choyudo/Méjico Ruiz et al./ 2009

GAL097 D. mojavensis Las Bocas/Méjico Ruiz et al./ 2009

GAL098 D. mojavensis Punta Onah/Méjico Ruiz et al./ 2009

GAL099 D. aldrichi Las Bocas/Méjico Ruiz et al./ 2009

GAL100 D. buzzatii Guaritas/Brasil Ruiz et al./ 1995

GAL101 D. buzzatii Trinkey/Australia Barker/1977

GAL102 D. buzzatii Mazán/Argentina Ruiz et al. /1982

GAL103 D. buzzatii Wari/Peru Fontdevila/1980

GAL104 D. buzzatii Quilmes/Argentina Ruiz et al. /1982

GAL105 D. buzzatii Ticucho/Argentina Hasson /1986

GAL106 D. buzzatii Otamendi/Argentina Ruiz et al. /1982

GAL107 D. buzzatii Carboneras/España Fontdevila et al. /1981

GAL108 D. buzzatii Carboneras/España Fontdevila et al. /1981

GAL109 D. buzzatii Sardinia/Italia Gompel/ 2006

GAL110 D. buzzatii Carboneras/España Fontdevila et al. /1981

GAL111 D. buzzatii Carboneras/España Fontdevila et al. /1981

GAL116 D. eremophila Punta Tecolote/Méjico Etges/2000

GAL117 D. pegasa Zapotitlan/Méjico Etges/2002

GAL118 D. fulvimacula Los Tuxtlas/Méjico Etges/2001

Page 12: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

12

GAL119 D. desertorum Big Bend NP/U.S.A. Etges/2005

GAL120 D. spenceri Infiernillo/Méjico Etges/1998

GAL121 D. huichole Zapotitlan/Méjico Etges/2002

GAL122 D. bifurca Punta/Méjico Etges/2000

GAL123 D. leonis Ixtlan del Rio/Méjico Etges/2000

GAL124 D. mainlandi Catalina Island/U.S.A. Counteman/2004

GAL125 D. hexastigma Zapotitlan/Méjico Etges/2000

GAL126 D. nigricruria Las Bocas/Méjico Ruiz et al./ 2009

GAL127 D. mettleri El Choyudo/Méjico Ruiz et al./ 2009

GAL128 D. acanthoptera Huatulco/Méjico Etges/2002

GAL129 D. wassermani Infiernillo/Méjico Etges/1998

GAL130 D. nannoptera Joluxtla/Méjico Etges/2000

GAL131 D. racemova El Tecolo/Méjico Etges/2000

GAL135 D. aldrichi Punta Onah/Méjico Ruiz et al./ 2009

GAL137 D. nigrohydei Nayón/Ecuador Acurio et al. 2009

GAL138 D. guayllabambae Nayón /Ecuador Acurio et al. 2009

GAL139 D. longicornis Guayllabamba/Ecuador Acurio et al. 2009

TOTAL 49 especies 98 muestras

2. Diseño de cebadores

Los cebadores, que se denominaron G5 y G6 fueron diseñados a partir del

alineamiento de las secuencias más conservadas de la transposasa en las subfamilias C

y D de Galileo en D. mojavensis. Para esto, se utilizaron las copias casi completas de

Galileo en el genoma de D. mojavensis reportadas por Marzo et al. (2008): la secuencia

BK006357 localizada en el contig 10758.1 (Grupo C) y la secuencia BK006358

localizada en el contig 9930 (Grupo D). Se esperaba que estos cebadores amplifiquen

un fragmento de alrededor de 450bp del ORF que codifica la transposasa (Figura 3,

Tabla 2).

Page 13: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

13

Figura 3. Esquema que denota la estructura de Galileo y el fragmento de interés. En

rojo se muestran los cebadores utilizados.

Tabla 2. Cebadores utilizados en este estudio.

Primers Secuencia (5'-3') Longitud (bp)

G5 TGCACCGCATCTWGTWAAATCC 22

G6 AAATAATCACGCATTTCCWGAAG 23

3. Extracción del DNA genómico

La extracción del DNA genómico se realizó a partir de un solo individuo

conservado en etanol. Se utilizó la técnica de extracción con Bromuro de

Hexadeciltrimetilamonio (CTAB). El espécimen fue homogenizado con una varilla

estéril de polipropileno, a este homogenato se agregó 700 µl de buffer CTAB a 60°C y

se incubó durante 1 hora a la misma temperatura. Se agregó 600 µl de

cloroformo/isoamílico y se mezcló por 5 minutos a temperatura ambiente. Se centrifugó

a 13.000 revoluciones por minuto (rpm) durante 5 minutos y se recogió el sobrenadante

al que se le agregó igual volumen de isopropanol frío y se mezcló por inmersión para

la precipitación del DNA. Se recuperó el pellet centrifugando a 13.000 rpm durante 5

minutos y se descartó el líquido. El pellet obtenido se lavó con 300 µl de etanol al 70%

y se centrifugó nuevamente a 13.000 rpm durante 5 minutos, se descartó el etanol y se

Page 14: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

14

secó cuidadosamente el pellet al vacío. Finalmente se disolvió el pellet en 50 µl de agua

MQ estéril. Para determinar la cantidad y la calidad del DNA extraído se realizaron dos

reacciones de PCR con los cebadores correspondientes a los genes Cox I y Gapdh. Los

productos de la amplificación se corrieron en un gel de agarosa al 0.7% y tinción de

bromuro de etidio.

4. Reacción en cadena de la polimerasa (PCR)

La preparación de la mezcla para la reacción de PCR fue realizada con las

cantidades detalladas en la Tabla 3. Se utilizó la Taq Polimerasa de Roche Applied

Science. Las condiciones utilizadas en el termociclador MJ Mini BIO-Rad® de Bio-

Rad Laboratories, Inc. fueron optimizadas para la secuencia de interés (Tabla 4).

Tabla 3. Cantidades utilizadas en cada reacción de PCR.

Cantidades/reacción

H2O 22,2 µl

Buffer 10X 3 µl

dNTPs 2mM 0,6 µl

Primer 5 10 mM 1 µl

Primer 6 10 mM 1 µl

Taq Pol. 5u/µl 0,2 µl

DNA 2 µl

Total 30 µl

Tabla 4. Programa utilizado en el termiclador para la PCR.

Fase Temperatura Tiempo

Denaturación inicial 95 °C 4 minutos

35

ciclos

Denaturación 95°C 30 segundos

Anillamiento 53°C 30 segundos

Extension 72°C 30 segundos

Extensión final 72°C 7 minutos

Page 15: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

15

5. Visualización del fragmento obtenido

Se cargaron 10 µl del producto de PCR más 2µl de marcador de peso molecular

(Ladder 1 Kb plus de INVITROGEN®) en un gel de agarosa con una concentración de

0,7%. Para la migración electroforética se utilizó Tampón TAE 1X (Tris Acético 40

mM y EDTA 1mM), el voltaje utilizado varió de 70-90 voltios de acuerdo a la

extensión del gel. Para la tinción, los geles fueron sometidos a una solución de Bromuro

de Etidio a una concentración 0,5 µg/ml y radiación ultravioleta. Fotografías de los

geles fueron captadas utilizando el programa Alpha Digidoc RT©.

El producto de PCR fue purificado con el kit NucleoSpin® Extract II de Clontech

Laboratories, Inc. con tecnogía de columnas con membranas de silice.

6. Clonación del producto de PCR

Para la clonación del fragmento de interés se siguieron los protocolos de:

1. El vector sintético pGEM Easy® de Promega

2. Kit Strataclone® de Stratagene

1. Para la reacción de ligación con el vector pGEM Easy ® se utilizó 5µl de T4 DNA

ligasa, 1µl de pGEM vector (50 ng), 3 µl de producto de PCR y 1 µl T4 DNA

ligasa. Para lograr un mayor número de transformaciones, la reacción fue incubada

durante toda la noche. Las cantidades utilizadas para la preparación de placas LB-

Ampicilina-Xgal-IPTG y medio SOC se encuentran resumidas en la Tabla 5.

Para preparar las células competentes se siguió el protocolo de Sambrook & Russel

(2001). Se colocaron en agitación 50 µl de cultivo de E. coli DHSα F' y 50 µl de medio

Page 16: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

16

LB (Tabla 5) durante 4 horas a 37°C de temperatura, luego 10 µl de este cultivo fue

colocado en hielo durante 20 minutos, se centrifugó durante 10 minutos a 4000 RPM a

4°C de temperatura, se eliminó el sobrenadante y se resuspendió el pellet con 2 µl de

0,1 M CaCl2 a 4°C, se volvió a centrifugar durante 10 minutos a 4000 RPM a 4°C,

volvió a eliminar el sobrenadante y se resuspendió el pellet con 0.4µl de 0,1 M CaCl2.

Las células competentes se mantuvieron a 4°C hasta su transformación.

Para la transformación usando el vector pGEM se colocaban 50µl de la reacción de

ligación en las células competentes y luego se sometían a un choque térmico (90

segundos a 42º C) para incorporar el vector con el inserto, se agregaba 950 µl de medio

SOC y se incubaba una hora y media a 37°C, luego se colocaban 150 µl del cultivo

transformado en placas de LB –Ampicilina-IPTG- Xgal se incubaba a 37°C durante

toda la noche.

Tabla 5. Cantidades y componentes usados en la preparación de placas de

incubación y medio SOC.

Placa de incubación (unidad)

Medio SOC 1000 µl

Agar LB 25 µl SOC 970 µl

Ampicilina 50µg/ml 25 µl Mg 2+ 10 µl

X-Gal 20 µg/ml 25 µl Glucosa 10 µl

IPTG 12,5 µl H2O 10 µl

Debido a que este kit permite una diferenciación por color de las células transformadas

se seleccionaron 4-6 colonias blancas de cada placa y se realizó una reamplificación

del fragmento con los primer SP6 y T7. Las condiciones del termociclador se

encuentran detalladas en la Tabla 4.

Page 17: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

17

2. Para la ligación con el kit Strataclone de Stratagene® se utilizaron 3µl de Cloning

Buffer, 2µl de producto de PCR, 1 µl de vector Ampicilina/Kanamicina, este kit

viene con células competentes incluidas. Para su transformación las células

competentes eran sometidas a un choque térmico. Se utilizó 1 µl de la reacción de

ligación y se incubaba con medio LB a 37°C durante 1 hora. 100µl de la reacción

de transformación se colocaban en placas de LB-Ampicilina-Xgal y eran incubadas

durante toda la noche a 37°C. Al día siguiente se seleccionaban 4 a 6 colonias

blancas y se realizaba una PCR para reamplificar el fragmento con los cebadores T6

y T7. En el termociclador se utilizaron las condiciones de la Tabla 4.

Para visualizar el fragmento clonado se cargaron 10 µl del producto de PCR

resultado de la clonación más 2 µl de tampón de carga en un gel de agarosa al 0,7%, la

tinción se realizó con bromuro de etidio. Los clones obtenidos de cada muestra tenían el

mismo tamaño por lo que un solo clon fue seleccionado por cada muestra. Luego de ser

limpiado el producto de PCR resultado de la clonación fue enviado al servicio de

secuenciación de Macrogen en Corea del Sur (www.macrogen.com).

7. Análisis de las secuencias amplificadas

Los cromatogramas de las secuencias Galileo fueron editados con el programa

Geneious© V 5.0 (Drummond et al. 2010). Las secuencias de los cebadores y el vector

de clonación fueron eliminadas de las muestras. Para comprobar la identidad de las

secuencias amplificadas se realizó un Megablast (Zhang et al. 2000), que muestra sólo

resultados que alcancen un alto grado de similaridad, contra la colección de nucleótidos

no redundantes (nr) de la base de datos del NCBI. Para la identidad de las secuencias se

Page 18: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

18

estableció un umbral de e-30 para el valor E con un porcentaje de identidad nucleotídica

superior al 70%. Las copias incompletas de Galileo C, D y F (BK006358 Contig 10369)

reportadas en el genoma de D. mojavensis (Marzo et al. 2008) fueron utilizadas en la

construcción de la filogenia.

Las secuencias fueron alineadas con el programa MUSCLE 3.5 (Edgar 2004). Este

programa consiguio un alineamiento óptimo y permitio el uso de la información

generada por los gaps originados por la naturaleza de las secuencias. Las inserciones

encontradas en las muestras GAL001/aldrichi, GAL025/wheeleri, GAL135/aldrichi y

GAL033/mojavensis fueron eliminadas antes de ser alineadas para la construcción de la

filogenia.

La secuencia casi-completa de Galileo reportada en D. virilis (Figura 1) por Marzo

et al. (2008) fue utilizada como grupo externo (outgroup) en la filogenia. Esta

secuencia tiene el número de acceso BK006359 en GenBank y está localizada en el

conting 16409.

8. Construcción de la filogenia

Para la construcción de la filogenia se utilizó el método de Inferencia Bayesiana.

Este método nos permitió evaluar la sensibilidad de la topología del árbol filogenético a

los métodos de análisis utilizando el algoritmo Markov-Monte Carlo (MCMC) con el

programa MrBayes 3.0 (Huelsenbeck & Ronquist 2001). Cuatro búsquedas de cadenas

que incluían 1 cadena cold y 3 cadenas hot fueron programadas en el computador, cada

cadena permitía correr 2.000.000 generaciones. Los árboles generados se conservaban

cada 200 generaciones y las primeras 300.000 generaciones eran descartadas para

Page 19: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

19

asegurar que se había alcanzado un valor estable de la verosimilitud. Un consenso

estricto de árboles remanentes en este proceso fue computado y la probabilidad a

posteriori para cada nodo fue estimada para tener robustez en cada selección. Los

clados obtenidos fueron considerados robustos cuando alcanzaban un valor de la

probabilidad Bayesiana posterior > 95%.

También se utilizó el método de Maximum Likelihood para elaborar árboles

filogenéticos realizados con PhyML (Guindon et al. 2005) implementado en Geneious

5.0. Las distancias moleculares fueron estimadas por el modelo de sustitución K80 de

Kimura para utilizar la información generada por deleciones/inserciones en las

secuencias. Para conocer el soporte estadístico de cada nodo en el árbol se calcularon

los valores bootstrap basados en 100 replicas con un umbral bootstrap >70%.

Page 20: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

20

III. RESULTADOS

1. Amplificación por PCR de las copias de Galileo

Las secuencias de Galileo fueron amplificadas en 51 muestras de 16 especies del

grupo repleta (Tabla 6, Figura 7). No se detectó Galileo en 47 muestras de 35 especies

(Tabla 7). Para la comparación de los datos obtenidos se utilizó la clasificación

taxonómica de las especies del grupo repleta basada en los trabajos de Durando et al.

2000, Moran & Fontdevila 2005, O'Grady et al. 2002, Oliveira et al. 2003, Oliveira et

al. 2005, Ruiz et al. 1990, Spicer & Pitnick 1996, Vilela 1983 y Wasserman 1992.

Dentro del grupo repleta se pudo amplificar Galileo en dos de los cuatro subgrupos

muestreados (mulleri y repleta). En el subgrupo mulleri se obtuvieron resultados

positivos en los 5 complejos de especies, en el complejo buzzatii amplificaron 6

especies (D. borborema, D. buzzatii, D. koepferae, D. richardsoni, D. stalkeri y D.

martensis), en el complejo longicornis 4 especies (D. desertorum, D. longicornis, D.

mainlandi y D. hamatofila), en el complejo mojavensis 2 especies (D. arizonae y D.

mojavensis) y en el complejo mulleri 3 especies (D. aldrichi, D. mulleri y D. wheeleri).

Sólo amplificó una especie del subgrupo repleta, D. fulvimacula, perteneciente al

complejo fulvimacula.

En contraste los subgrupos mercatorum y hydei no dieron resultados positivos en la

amplificación. Tampoco se obtuvo amplificación en las 4 especies del grupo

nannoptera ni en la muestra del grupo virilis. La divergencia de Galileo en D. virilis

pudo haber sido la causa por la que los cebadores no amplificaron esta secuencia por

PCR.

Page 21: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

21

En general se puede observar un patrón claramente distinguible de la amplificación de

la transposasa de Galileo dentro de las especies del subgrupo mulleri. En concordancia

con la historia evolutiva de la filogenia de las especies (Figura 7), la invasión de Galileo

en este linaje pudo haber sucedido como un evento único en la especie ancestral del

subgrupo mulleri. La amplificación de dos muestras de D. fulvimacula que pertenece al

subgrupo repleta extienden la distribución de Galileo a este subgrupo, sin embargo

esta secuencia comparte sólo el 77,7% de identidad nucleotídica con las demás

secuencias lo que podría sugerir que se trata de un tipo diferente de Galileo.

Tabla 6. Especies que dieron un resultado positivo para la amplificación de Galileo. El

tamaño de los fragmentos incluye los cebadores G5 y G6. El asterisco indica que el

fragmento tiene un ORF de longitud completa.

Especie Código Tamaño (bp)

Grupo repleta

Subgrupo mulleri

Complejo buzzatii

Cluster buzzatii D. borborema GAL041 378

D. buzzatii GAL012 343

D. buzzatii GAL100 344

D. buzzatii GAL101 340

D. buzzatii GAL102 426*

D. buzzatii GAL103 426*

D. buzzatii GAL104 426*

D. buzzatii GAL105 340

D. buzzatii GAL106 307

D. buzzatii GAL107 426*

D. buzzatii GAL108 426*

D. buzzatii GAL109 426

D. buzzatii GAL110 426*

D. buzzatii GAL111 339

D. koepferae GAL005 369

Cluster martensis D. martensis GAL007 429

Cluster stalkeri D. richardsoni GAL045 426*

D. stalkeri GAL015 420

Complejo longicornis

Cluster ritae D. desertorum GAL119 426

Cluster longicornis D. longicornis GAL043 757

Page 22: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

22

D. mainlandi GAL124 423

D. hamatofila GAL052 426*

Complejo mulleri

Cluster mojavensis D. arizonae GAL002 427

D. arizonae GAL003 425

D. arizonae GAL024 426*

D. arizonae GAL026 426*

D. arizonae GAL028 425

D. arizonae GAL029 426*

D. arizonae GAL095 426*

D. arizonae GAL096 427

D. mojavensis GAL009 426*

D. mojavensis GAL023 426*

D. mojavensis GAL031 428

D. mojavensis GAL033 578

D. mojavensis GAL034 426*

D. mojavensis GAL035 426*

D. mojavensis GAL037 434

D. mojavensis GAL090 426*

D. mojavensis GAL091 434

D. mojavensis GAL097 426*

D. mojavensis GAL098 426*

Cluster mulleri D. aldrichi GAL001 722

D. aldrichi GAL032 401

D. aldrichi GAL036 401

D. aldrichi GAL099 401

D. aldrichi GAL135 426

D. mulleri GAL010 741

D. wheeleri GAL025 437

D. wheeleri GAL027 426

Subgrupo repleta

Complejo fulvimacula D. fulvimacula GAL042 426

D. fulvimacula GAL118 426

TOTAL 16 especies 51 muestras

Tabla 7. Especies que no amplificaron Galileo con los cebadores G5 y G6.

Especie Código

Grupo repleta

Subgrupo hydei

Complejo bifurca D. bifurca GAL122

D. nigrohydei GAL137

D. guayllabambae GAL138

Complejo hydei D. hydei GAL044

Page 23: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

23

D. hydei GAL092

D. hydei GAL093

D. hydei GAL094

Subgrupo mercatorum

D. mercatorum GAL008

D. mercatorum GAL039

D. mercatorum GAL058

D. mercatorum GAL059

D. paranaensis GAL054

D. peninsularis GAL055

Subgrupo mulleri

Complejo anceps

Cluster anceps D. anceps GAL040

D. leonis GAL123

D. nigrospiracula GAL084

Complejo buzzatii

Cluster martensis D. starmeri GAL016

D. uniseta GAL018

D. venezolana GAL020

Complejo eremophila

Cluster eremophila D. eremophila GAL085

D. eremophila GAL116

Complejo longicornis

Cluster longicornis D. longicornis GAL139

Cluster ritae D. ritae GAL047

Cluster huckinsi D. huckinsi GAL088

D. huichole GAL121

Sin cluster D. hexastigma GAL053

D. hexastigma GAL125

D. spenceri GAL089

D. spenceri GAL120

Complejo meridiana D. meridiana GAL056

D. pegasa GAL117

Complejo mojavensis

Cluster mojavensis D. navojoa GAL030

D. navojoa GAL086

Complejo anceps

Sin cluster D. leonis GAL123

D. nigrospiracula GAL084

Complejo mulleri

Page 24: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

24

Subcluster mayaguana D. mayaguana GAL011

D. straubae GAL046

Complejo eremophila D. mettleri GAL038

D. mettleri GAL127

Sin complejo D. nigricruria GAL126

D. racemova GAL131

Subgrupo repleta

Complejo repleta D. repleta GAL022

D. neorepleta GAL057

Grupo nannoptera D. pachea GAL082

D. pachea GAL083

D. nannoptera GAL130

D. acanthoptera GAL128

D. wassermani GAL129

Grupo virilis

Complejo virilis D. virilis GAL019

Total 35 especies 47 muestras

Page 25: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

25

Figura 7. Filogenia de las especies de Drosophila del grupo repleta (Oliveira, en

preparación). Las figuras cuadradas indican las especies utilizadas en este estudio, azules

para amplificación positiva y rojas para amplificación negativa. La estrella muestra el

posible punto de invasión de Galileo en el linaje del grupo repleta.

Page 26: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

26

2. Identidad de las secuencias amplificadas

Como resultado del Megablast realizado con cada una de las secuencias

amplificadas contra la base de datos del NCBI se obtuvieron valores altamente

significativos de similaridad con las secuencias BK006357 (5989 bp) y BK006358

(6576 bp) correspondientes a copias de Galileo halladas en el genoma de D.

mojavensis (Marzo et al.2008) (Tabla 8). El alineamiento de las secuencias (Figura

4) permitió la localización de fragmentos insertados y evidenció la degradación de

algunas copias que mostraban deleciones y pequeñas duplicaciones.

Encontramos que 20 secuencias tienen un ORF que se puede traducir

completamente a proteína, sin codones stop ni alteraciones del cambio en la pauta

de lectura de la región amplificada de la transposasa de Galileo (Figura 5)

sugiriendo que podrían ser copias autónomas. En cambio 31 secuencias

amplificadas son copias defectivas.

Mediante un alineamiento de las 20 secuencias protéicas y las copias de

Galileo C, D y F reportadas por Marzo et al. (2008) en el genoma de D. mojavensis,

se pudo comprobar que la transposasas amplificadas tiene segmentos altamente

conservados y que los fragmentos de las transposasas amplificadas en este estudio

contienen el aminoácido D677 (Figura 5), que forma parte de la firma molecular de

diferentes tipos de transposasas.

Page 27: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

27

Tabla 8. Resultados del mejor alineamiento posible (best hit) encontrado en la base

de datos del NCBI realizado con cada una de las secuencias obtenidas en especies

del grupo repleta de Drosophila.

Muestra E- Value D. mojavensis TE Galileo

Nombre Identidad

GAL001/D. aldrichi 1.32e-105 BK006357 89.0%

GAL002/D. arizonae 3.06e-164 BK006357 95.4%

GAL003/D. arizonae 5.12e-157 BK006357 93.4%

GAL005/D. koepferae 8.23e-60 BK006357 86.0%

GAL007/D. martensis 2.07e-81 BK006357 82.8%

GAL009/D. mojavensis 8.36e-175 BK006358 97.0%

GAL010/D. mulleri 6.84e-136 BK006357 90.6%

GAL012/D. buzzatii 1.18e-63 BK006357 79.2%

GAL015/D. stalkeri 1.63e-88 BK006358 79.4%

GAL023/D. mojavensis 0 BK006357 100.0%

GAL024/D. arizonae 6.51e-171 BK006357 96.5%

GAL025/D. wheeleri 2.89e-112 BK006357 90.3%

GAL026/D. arizonae 8.30e-180 BK006358 97.8%

GAL027/D. wheeleri 4.24e-133 BK006357 88.8%

GAL028/D. arizonae 1.10e-158 BK006357 93.7%

GAL029/D. arizonae 3.86e-178 BK006358 97.6%

GAL031/D. mojavensis 1.10e-168 BK006358 95.1%

GAL032/D. aldrichi 2.42e-95 BK006357 84.7%

GAL033/D. mojavensis 3.17e-31 BK006357 93.8%

GAL034/D. mojavensis 0 BK006358 98.1%

GAL035/D. mojavensis 8.30e-180 BK006358 97.8%

GAL036/D. aldrichi 2.42e-95 BK006357 84.7%

GAL037/D. mojavensis 1.10e-178 BK006358 96.4%

GAL041/D. borborema 4.00e-48 BK006357 78.7%

GAL042/D. fulvimacula 4.32e-98 BK006357 84.7%

GAL043/D. longicornis 3.16e-139 BK006357 90.6%

GAL045/D. richardsoni 3.51e-64 BK006358 79.9%

GAL052/D. hamatofila 1.47e-137 BK006357 90.3%

GAL090/D. mojavensis 8.91e-130 BK006358 89.4%

GAL091/D. mojavensis 2.36e-180 BK006358 96.7%

GAL095/D. arizonae 8.30e-180 BK006359 97.8%

GAL096/D. arizonae 1.81e-171 BK006358 96.5%

GAL097/D. mojavensis 0 BK006358 99.2%

GAL098/D. mojavensis 8.30e-180 BK006358 97.8%

GAL099/D. aldrichi 2.42e-95 BK006357 84.7%

GAL100/D. buzzatii 2.15e-60 BK006357 78.2%

GAL101/D. buzzatii 1.10e-57 BK006357 77.5%

GAL102/D. buzzatii 9.43e-90 BK006358 83.2%

GAL103/D. buzzatii 4.32e-98 BK006358 84.6%

GAL104/D. buzzatii 9.36e-95 BK006358 83.9%

GAL105/D. buzzatii 1.10e-57 BK006357 77.5%

GAL106/D. buzzatii 4.97e-36 BK006357 71.6%

Page 28: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

28

GAL107/D. buzzatii 9.43e-90 BK006358 83.2%

GAL108/D. buzzatii 2.00e-101 BK006358 85.0%

GAL109/D. buzzatii 4.32e-98 BK006358 84.5%

GAL110/D. buzzatii 2.01e-96 BK006358 84.3%

GAL111/D. buzzatii 6.90e-54 BK006357 76.8%

GAL118/D. fulvimacula 4.32e-98 BK006357 84.7%

GAL119/D. desertorum 3.27e-114 BK006357 86.8%

GAL124/D. mainlandi 1.94e-116 BK006358 87.2%

GAL135/D. aldrichi 2.29e-114 BK006358 90.2%

TOTAL 51 muestras

Page 29: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

29

Figura 4. Parte del alineamiento de las 52 secuencias utilizadas en este estudio. Cambios a nivel nucleotídico e inserciones se

muestran con diferentes colores, las líneas entrecortadas muestran deleciones.

Page 30: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

30

Figura 5. Alineamiento proteico de las 20 secuencias amplificadas de la transposasa de Galileo y las secuencias C, D y F. En la

parte superior, se encuentra la secuencia consenso. Los segmentos más conservados están enmarcados en un recuadro de color

negro, la estrella de color rojo indica la localización del aminoácido en el dominio catalítico D677.

Page 31: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

31

Cuatro muestras contenían inserciones de tamaño considerable,

GAL001/aldrichi contenía una inserción de 308 nucleótidos, GAL025/wheeleri y

GAL135/aldrichi contenían una inserción de 327 nucleótidos y GAL033/mojavensis

contenía una inserción de 227 nucleótidos (Figura 6). Se utizaron varias

herramientas bioinformáticas como Megablast y Repeat Masker pero no se

obtuvieron resultados significativos que permitan conocer la identidad de estas

secuencias. Sin embargo, los insertos se categorizaron como tipo I en las secuencias

GAL001/aldrichi, GAL025/wheeleri y GAL135/aldrichi por compartir entre ellas

una identidad nucleotídica del 96% y encontrarse en la misma posición dentro de las

secuencias. La inserción en la secuencia GAL033/mojavensis comparte sólo el 47%

de identidad nucleotídica con las otras tres inserciones encontradas por lo que

clasificó como tipo II.

Figura 6. Diagrama que muestra la posición y longitud de las inserciones. En

celeste, las secuencias de Galileo. En verde inserción de tipo I y en violeta la

inserción tipo II.

Page 32: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

32

3. Relaciones filogenéticas

Los árboles obtenidos mediante Inferencia Bayesiana y Maximum

Likelihood tienen escencialmente la misma topología. La Figura 8 muestra el árbol

construido con 51 secuencias de Galileo en el grupo repleta, la secuencia de D. virilis

como outgroup y las secuencias C, D y F de D. mojavensis

En general la filogenia concuerda con el árbol filogenético de las especies

del grupo repleta (Figura 7). Por ejemplo se observan grupos monofiléticos a nivel de

complejos de especie como el que forman las muestras de las especies D. buzzatii, D.

borborema, D. stalkeri y D. richarsoni (complejo buzzatii), el grupo monofilético formado

por D. longicornis, D. mainlandi y D. hamatofila (complejo longicornis) y el grupo

monofilético formado por las dos muestras de D. fulvimacula, que pertenece a un subgrupo

diferente de las demás muestras (subgrupo repleta). Algunas discordancias se dan a nivel

de especies como las muestras de Galileo en D. arizonae y D. mojavensis (complejo

mojavensis) que se entremezclan en la filogenia. La especie D. desertorum se situa distante

de su complejo de especies, esto podría ser explicado por discordancias que existen en

torno a su clasificación dentro del complejo longicornis (Oliveira et al. 2005).

En la Figura 7 se puede apreciar también las diferencias intraespecíficas en relación al tipo

de Galileo que se amplificó en el genoma de cada especie, copias de Galileo tipo C y D

fueron encontradas en el genoma de D. mojavensis, otro caso es el de D. fulvimacula que

tiene copias de Galileo más similares a la de D. mojavensis de tipo F. Por la formación de

grupos monofiléticos se pueden distinguir tipos diferentes de Galileo en el genoma de la

misma especie como en D. mojavensis y 3 grupos diferentes en D. buzzatii. Las muestras

que fueron editadas por contener las inserciones de tipo I y II aparecen separadas de los

Page 33: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

33

clusters de especie a los que pertenecen y se grupan de acuerdo al tipo de inserción, de tipo

I Gal001/aldrichi, Gal135/aldrichi y Gal025/wheeleri y de tipo II Gal033/mojavensis.

Figura 8. Árbol obtenido mediante Inferencia Bayesiana de las transposasas de Galileo en

el grupo repleta de Drosophila. Los números indican el valor bootstrap de Maximun

likelihood y la probabilidad posterior de un clado asociado. Los colores denotan diferentes

subgrupos de especies.

Page 34: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

34

V. DISCUSIÓN

1. Galileo en el grupo de especies repleta

Previamente se había determinado que cuatro subfamilias del elemento

transponible Galileo se encontraban en el genoma de D. mojavensis (C, D, E y F) (Marzo

et al. 2008) y tres subfamilias en el genoma de D. buzzatii (Galileo, Kepler y Newton)

(Casals et al. 2005, Delprat et al. 2009). Nuestros resultados apoyan la hipótesis de que

Galileo es una familia de elementos transponibles con subfamilias o grupos diferenciados.

Al igual que en la filogenia de las especies del grupo repleta (Durando et al., 2000) y

conclusiones de análisis citológicos (Ruiz & Wasserman, 1993), en la filogenia obtenida

con la transposasa de Galileo, se observa que las 6 especies del complejo buzzatii forman

un grupo monofilético. Las copias amplificadas de Galileo en Drosophila buzzatii forman

grupos monofiléticos diferenciados que muestran una relación filogenética similar a la

encontrada entre Galileo, Kepler y Newton por Casals et al. (2005) con las secuencias de

los TIR. Los elementos Kepler y Newton comparten una identidad nucleotídica del 90%,

sus transposasas no se conocen. Sin embargo la información obtenida en este estudio podría

servir para el diseño de cebadores que ayuden a aclarar la organización estructural de estos

elementos.

El patrón entremezclado observado en las especies D. mojavensis y D. arizonae del

complejo mojavensis es similar al encontrado en filogenias realizadas utilizando genes

mitocondriales y puede deberse a que son especies gemelas de separación reciente que

comparten un polimorfismo ancestral (Reed & Markow 2004, Oliveira et al. 2003). El

tiempo de divergencia estimado entre estas dos especies es de 1,91 a 2,97 millones de años

(Reed et al. 2007). La especie D. desertorum clasificada dentro del cluster ritae del

Page 35: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

35

complejo longicornis por similaridades encontradas en caracteres cromosómicos

(Waserman 1992) aparece fuera del complejo en la filogenia obtenida con la transposasa de

Galileo. Este resultado es similar al que muestra la filogenia obtenida por Durando et al.

(2000) en donde esta especie es clasificada fuera del complejo longicornis argumentando

que este no es un complejo monofilético.

La obtención de las secuencias de Galileo en 16 de las 51 especies muestreadas

refleja un patrón observable en la filogenia de las especies, sugiriendo que la adquisición de

Galileo en el genoma de la especie ancestral del subgrupo mulleri fue un evento único.

Posteriormente las secuencias de Galileo han divergido dentro de cada una de las especies,

lo que podría explicar la abundancia de copias que se puede encontrar dentro del genoma

de una especie como fue el caso en D. mojavensis y D. buzzatii. El tiempo mínimo

estimado para la invasión de Galileo en el subgrupo mulleri se puede establecer con el

tiempo de divergencia del subgrupo mulleri, estimado en alrededor de 11 millones de años

(Ruso et al. 1995). La inserción de Galileo en el subgrupo repleta sin embargo no pudo ser

establecida de manera precisa con los datos obtenidos en este estudio. Una hipótesis que se

podría plantear es que la colonización en este subgrupo se llevó a cabo de manera

independiente a la del subgrupo mulleri, lo cual podría explicar las diferencias encontradas

en las secuencias amplificadas de D. fulvimacula.

No se obtuvo amplificación de Galileo en los subgrupos más basales de la filogenia

del grupo repleta como los subgrupos hydei y mercatorum. Dos explicaciones podrían ser

propuestas para estos resultados. En el primer caso la ausencia podría deberse a que la

adquisición de Galileo fue posterior a la divergencia de estos dos subgrupos hace

aproximadamente 22 millones de años (Spicer & Pitnick 1996). En el segundo caso, la

Page 36: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

36

ausencia de Galileo podría explicarse por una pérdida estocástica de las copias (Lohe et al.

1995), lo que sería factible si en un período largo de tiempo la tasa de pérdida de

elementos por deriva génica excede la tasa de ganancia de elementos por transposición,

eventualmente no quedarían elementos remanentes en el genoma. La divergencia gradual

en las secuencias ocasionada aleatoriamente por mutaciones podría hacer que los elementos

no puedan ser identificados por PCR o hibridización de ADN. Así, la presencia de Galileo

dentro de las especies del grupo repleta detectada en este estudio podría ser un estimado

conservador tomando en cuenta que un sólo cambio nucleotídico pudo evitar que la

secuencia sea reconocida por los cebadores.

2. Dinámica de Galileo en el grupo repleta

Las relaciones filogenéticas encontradas con la transposasa de Galileo coinciden en

términos amplios con las relaciones filogenéticas obtenidas con las especies del grupo

repleta, lo que nos permite inferir que Galileo tiene una dinámica de diversificación

vertical dentro del linaje del grupo repleta. Esta hipótesis ha sido propuesta para explicar la

la persistencia y emergencia de nuevas especies de elementos L1 en mamíferos (Khan et al.

2006) y la diversificación gradual de elementos Mariner en gramíneas (Feschotte &

Wessler 2002) originados por procesos estocásticos y fundamentados en la teoría neural de

la biodiversidad (Tilman 2004, Venner et al. 2009). Aunque eventos de transferencia

horizontal han sido propuestos como un componente integral del ciclo de vida en los

transposones de clase II como Mariner y Elementos P (Kidwell 1994, Pinsker et al. 2001),

en este estudio no se encontraron evidencias de que Galileo utilice la transferencia

horizontal para su transmisión en el genoma del hospedador.

Page 37: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

37

3. La transposasa de Galileo

El alineamiento de las secuencias traducidas mostró la presencia de inserciones,

deleciones y sustituciones que introducen codones de stop o causan cambios en el marco

de lectura. Un 39% de las transposasas amplificadas tenían un ORF de longitud completa.

Así, es probable que en el genoma de las especies del grupo repleta una gran porción de

copias de Galileo contengan transposasas inactivas. Esto ha sido observado también en

transposasas de elementos de clase II como Mariner (Feschotte & Wessler 2002). El

modelo más simple para explicar la abundancia de copias no autónomas se basa en que

podría existir una presión de selección positiva de los elementos inactivos. Esto podría ser

factible gracias a que dichos elementos pueden participar en la regulación del mecanismo

de transposición en al menos dos maneras. Primero, sirviendo como sustrato para la

transposición debido a su necesidad de una transposasa funcional, su multiplicación no

incrementa la cantidad total de transposasa producida (Lohe et al. 1997). Segundo, los

elementos inactivos tienen interferencia directa con la transposasa funcional a través de

competencia por sitios de inserción o por degradación de la transposasa con subunidades

inactivas (Lohe et al. 1996).

Las transposasas de Galileo amplificadas incluyen el primer aminoácido de la firma

molecular DD/E, que se encuentra en diversos tipos de transposasas e intregrasas. Esta

firma consiste en dos residuos de ácido aspártico, típicamente separados por más de 90

aminoácidos, seguida por un residuo de ácido glutámico (Hartl et al. 1997). La firma

molecular DD/E al parecer juega un rol importante en el mecanismo de reacción, que es

parte del sitio activo de la enzima y que sirve como dominio de acoplamiento para el cation

divalente (Mg2 o Mn2) necesario para la catálisis (Richardson et al. 2009). La característica

Page 38: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

38

que comparten todas las proteínas que contienen esta firma es su habilidad para realizar

cortes de cadena simple en una molécula duplex de DNA y exponer un extremo 3' hidroxil

que es unido con nucleótidos dispuestos en posición opuesta a las secuencia target que será

reparada por enzimas de la célula hospedadora, creando una duplicación directa,

característica de la inserción de un elemento transponible (Craig 1995).

4. Inserciones encontradas en Galileo

No se pudo determinar con certeza la identidad de las inserciones encontradas en las

secuencias de D. mojavensis, D. aldrichi y D. wheeleri. Sin embargo previamente

elementos ISBu han sido reportados en secuencias de Galileo en D. buzzatii (Casals et al.

2005) y D. mojavensis (Marzo et al. 2008). Los ISBu son Helitrones, un tipo de

transposones de DNA que se replican por un mecanismo de círculo rodante (Kapitonov &

Jurka 2001) y se encuentran ampliamente distribuidos dentro del género Drosophila (Yang

& Barbash 2008). Los helitrones son los únicos transposones conocidos en eucariotas que

se integran en el genoma sin la introducción de TSD. Usualmente la integración de los

helitrones ocurre específicamente entre nucleótidos A y T en la secuencia del hospedador.

Los helitrones no tienen TIR, presentes en otros transposones de DNA, en su lugar han

conservado secuencias TC 5' y CTRR en el extremo 3' (Jurka et al. 2007).

La posición en la filogenia de las muestras GAL001/aldrichi, GAL025/wheeleri,

GAL135/aldrichi y GAL033/mojavensis que contenían insertos podría obedecer a que parte

de la secuencia de Galileo fue delecionada durante el proceso de inserción de una secuencia

exógena.

Page 39: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

39

V. CONCLUSIONES Y PERSPECTIVAS

I. Los resultados obtenidos en este estudio extienden la distribución del elemento

transponible Galileo dentro del grupo de especies repleta de Drosophila. Galileo

está presente en al menos 16 especies de los subgrupos mulleri y repleta.

II. Las relaciones filogenéticas encontradas con la transposasa de Galileo coinciden con

las relaciones filogenéticas obtenidas con las especies del grupo repleta lo que nos

permite inferir que Galileo tiene una dinámica de diversificación vertical dentro del

linaje del grupo repleta.

III. No se obtuvieron evidencias de que Galileo haya utilizado el mecanismo de

Transferencia Horizontal en su distribución dentro del grupo repleta.

El hecho de que Galileo genere inversiones polimórficas por recombinación ectópica

sugiere que este elemento transponible tuvo una contribución importante en la

evolución del género Drosophila. La búsqueda de Galileo en otros grupos de especie

como los grupos willistoni y saltans que tienen un nicho ecológico diferente al grupo

repleta y entre los cuales se encuentran las especies más polimórficas del género

Drosophila es crítica para entender la dinámica y distribución de este elemento

transponible.

Page 40: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

40

VI. BIBLIOGRAFÍA

Bächli G (2010) TaxoDros: The Database on Taxonomy of Drosophilidae, version 2010-1, last

accessed 5 January 2010. http://taxodros.unizh.ch/

Berg D & Howe M (1989) Mobile DNA Washington, DC: American Society of Microbiology.

Biémont C & Vieira CN (2006) Genetics: Junk DNA as an evolutionary force. Nature 443: 521 -

524.

Brandt J, Schrauth S, Veith AM, Froschauer A & Haneke T (2005) Transposable elements as a

source of genetic innovation: expression and evolution of a family of retrotransposon-

derived neogenes in mammals. Gene 345: 101–111.

Brookfield JF (2005) The ecology of the genome - mobile DNA elements and their hosts. Nature

reviews. Genetics 6(2):128-36.

Cáceres M, Puig M & Ruiz A (2001) Molecular characterization of two natural hotspots in the

Drosophila buzzatii genome induced by transposon insertions. Genome Research

11(8):1353-64.

Casals F, Cáceres M & Ruiz A (2003) The foldback-like transposon Galileo is involved in the

generation of two different natural chromosomal inversions of Drosophila buzzatii.

Molecular Biology and Evolution 20(5):674-85.

Casals F, Cáceres M, Manfrin MH, González J & Ruiz A (2005) Molecular characterization and

chromosomal distribution of Galileo, Kepler and Newton, three foldback transposable

elements of the Drosophila buzzatii species complex. Genetics 169(4):2047-59.

Craig NL (1995) Unity in transposition reactions. Science 270:253–54.

Delprat A, Negre B, Puig M & Ruiz A (2009) The transposon Galileo generates natural

chromosomal inversions in Drosophila by ectopic recombination. PloS One 4(11):e7883.

doi:10.1371/journal.pone.0007883

Drummond AJ, Ashton B, Buxton S, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S,

Sturrock S, Thierer T & Wilson A (2010) Geneious v5.0.

Durando CM, Baker RH, Etges WJ, Heed WB, Wasserman M & DeSalle R (2000) Phylogenetic

analysis of the repleta species group of the genus Drosophila using multiple sources of

characters. Mol Phyl and Evol 16(2):296-307.

Page 41: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

41

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Research 32(5): 1792-97.

Eickbush TH & Furano AV (2002) Fruit flies and humans respond differently to

retrotransposons. Curr Opin Genet Dev 12: 669–674.

Feschotte C & Wessler SR (2002) Mariner-like transposases are widespread and diverse in

flowering plants. Proc Natl Acad Sci USA 99: 280–285.

Feschotte C et al. (2003) Genome-wide analysis of mariner-like transposable elements in rice

reveals complex relationships with stowaway miniature inverted repeat transposable

elements (MITEs). Genetics 163: 747–758

Guindon S, Lethiec F, Duroux P & Gascuel O (2005) Phyml online-a web server for fast

maximum likelihood-based phylogenetic inference. Nucl Acids Res 33:557-559.

Hartl DL, Lohe AR, Lozovskaya ER (1997) Modern thoughts on an ancyent Marinere: function,

evolution, regulation. Annu Rev Genet 31:337-358.

Jurka J, Kapitonov VV, Kohany O & Jurka MV (2007) Repetitive sequences in complex

genomes: structure and evolution. Annu Rev Genomics Hum Genet 8:241-259.

Kapitonov VV & Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci

USA 98:8714–19.

Kapitonov VV & Jurka J (2003) Molecular paleontology of transposable elements in the

Drosophila melanogaster genome. Proc Natl Acad Sci USA 100:6569-6574.

Kazazian H (1998) Mobile elements and disease. Curr Opin Genet Dev 8:343-350.

Khan H et al. (2006) Molecular evolution and tempo of amplification of human LINE-1

retrotransposons since the origin of primates. Genome Res 16: 78–87.

Kidwell MG (1994) The evolutionary history of the P family of transposable elements. J Hered

85: 339-346.

Langley CH, Montgomery E, Hudson R, Kaplan, N. & Charlesworth, B. (1988) On the role of

unequal exchange in the containment of transposable element copy number. Genet Res

52: 223–235.

Lohe AR, De Aguiar D & Hartl DL (1997). Mutations in the mariner transposase: The

“D,D(35)E” consensus sequence is nonfunctional. Proc Natl Acad Sci USA 94:1293–97.

Page 42: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

42

Lohe AR, Moriyama EN, Lidholm DA & Hartl DL (1995) Horizontal transmision, vertical

inactivation, and stochastic loss of mariner-like transposable elements. Mol Biol Evol

12:62–72.

Lohe AR, Sullivan DT, Hartl DL (1996) Genetic evidence for subunit interactions in the

transposase of the transposable element mariner. Genetics 144:1087–95.

Markow T & O’Grady PM (2006) Drosophila: A Guide to Species Identification and Use.

Academic Press, London.

Marzo M, Puig M & Ruiz A (2008) The Foldback-like element Galileo belongs to the P

superfamily of DNA transposons and is widespread within the Drosophila genus. Proc

Natl Acad Sci USA 105(8): 2957-62.

McDonald JF (1993) Transposable Elements and Evolution. Dodrect, The Netherlands: Kluver.

Medstrand P, van de Lagemaat LN, Dunn CA, Landry JR, Svenback D, & Mager DL (2005)

Impact of transposable elements on the evolution of mammalian gene regulation.

Cytogenet Genome Res 110 (1-4): 342-52.

Morán T & Fontdevila A (2005) Phylogeny and molecular evolution of the Drosophila hydei

subgroup (Drosophila repleta group) inferred from the Xanthine dehydrogenase gene.

Mol Phyl Evol: 36(3):695-705.

O'Grady PM, Durando CM, Heed WB, Wasserman M, Etges W &DeSalle R (2002) Genetic

divergence within the Drosophila mayaguana subcluster, a closely related triad of

Caribbean species in therepleta species group. Hereditas 136:240-245.

Oliveira DC, Wintermute EH, Etges WJ, Heed WB, O'Grady PM & Desalle R. (2003)

Hierarchical structure in the Drosophila mojavensis cluster (Diptera: Drosophilidae).

Hereditas 139(3):223-227.

Oliveira DC, Grady PM, Etges WJ, Heed WB & Desalle RO (2005) Molecular systematics and

geographical distribution of the Drosophila longicornis species complex (Diptera:

Drosophilidae). Zootaxa: 321 -332.

Pinsker W, Haring E, Hagemann S & Miller WJ (2001) The evolutionary life history of P

transposons: from horizontal invaders to domesticated neogenes. Chromosoma 110: 148-

158.

Page 43: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

43

Puig M, Cáceres M & Ruiz A (2004) Silencing of a gene adjacent to the breakpoint of a

widespread Drosophila inversion by a transposon-induced antisense RNA. Proc Natl

Acad Sci USA 101(24):9013-9018.

Rafael V & Arcos G (1989) Subgrupo inca, un nuevo subgrupo del grupo repleta, con

descripción de Drosophila huancavilcae N.SP. (Diptera, Drosophilidae). Evol Biol 3:233-

243.

Reed LK & Markow TA (2004) Early events in speciation: polymorphism for hybrid male

sterility in Drosophila. Proc Natl Acad Sci USA 101:9009-9012.

Reed LK, Nyboer M & Markow T (2007) Evolutionary relationships of Drosophila mojavensis

geographic host races and their sister species Drosophila arizonae. Mol Ecol 16(5):1007-

1022.

Richardson JM, Colloms SD, Finnegan DJ & Walkinshaw MD (2009) Molecular architecture of

the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote.

Cell 138(6):1096-10108.

Ruiz A, Wasserman M & Heed WB (1990) Evolution of the mojavensis cluster of cactophilic

Drosophila with descriptions of two new species. Heredity 81: 30–42.

Ruiz A & Wasserman M (1993) Evolutionary cytogenetics of the Drosophila buzzatii species

complex. Heredity 70:582-96.

Russo C, Takezaki N & Nei M (1995) Molecular phylogeny and divergence times of drosophilid

species. Molecular biology and evolution 12(3):391-404.

Sambrook J & Russell DW (2001) Molecular Cloning: A laboratory manual. 3rd ed, Cold Spring

Harbor Laboratory Press, New York.

Silva JC, Loreto EL & Clark JB (2004) Factors that affect the horizontal transfer of transposable

elements. Current issues in molecular biology 6(1):57-71.

Singh ND & Petrov DA (2004) Rapid sequence turnover at an intergenic locus in Drosophila.

Mol Biol Evol 21:670-680.

Spicer GS & Pitnick S (1996) Molecular systematics of the Drosophila hydei subgroup as

inferred from mitochondrial DNA sequence. J Mol Evol 43(3):281-286.

Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of

resource competition, invasion, and community assembly. Proc Natl Acad Sci USA 101:

10855–10861.

Page 44: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

44

Venner S, Feschotte C & Biémont C (2009) Dynamics of transposable elements: towards a

community ecology of the genome. Trends in Genetics 25(7):317-323.

Vilela CR (1983) A revision of the Drosophila repleta species group (Diptera, Drosophilidae).

Rev Bras Entomol 27:1- 114.

Wasseman M (1960) Cytological and phylogenetic relationships in the repleta group of the genus

Drosophila. Proc Nat Acad Sci USA 46:842-859.

Wasserman M (1982) Evolution of the repleta group. In: Ashburner M, Carson HL and

Thompson JN (eds) The Genetics and Biology of Drosophila. v. 3b. Academic Press,

London, pp. 61–139.

Wasserman M (1992) Cytological evolution of the Drosophila repleta species group. In: Krimbas

CB and Powell JR (eds) Drosophila Inversion Polymorphism. CRC Press, Boca Raton,

pp. 455-555.

Wessler S (2006) Eukaryotic transposable elements: teaching old genomes new tricks. In: L.

Caporale, Editor, The Implicit Genome, Oxford University Press, Oxford, pp. 138–165.

Yang H & Barbash D (2008) Abundant and species-specific DINE-1 transposable elements in 12

Drosophila genomes. Genome Biology 9(2):39-45.

Page 45: Diversidad del elemento transponible Galileo en …repositorio.educacionsuperior.gob.ec/bitstream/28000/1658/1/T... · Tomado y modificado de Marzo et al. (2008). 7 ... clasificadas,

45

VII. AGRADECIMIENTOS

Este trabajo no se habría podido realizar sin la colaboración de varias personas que

me han brindado su ayuda, sus conocimientos y su apoyo.

Quiero agradecer en primer lugar a mi familia porque a pesar de la distancia, el

ánimo, apoyo y alegría que me brindan me dan la fortaleza necesaria para seguir adelante.

Quedo especialmente agradecida con mis dos directores de tesis. El Dr. Alfredo

Ruiz que me acogió en su grupo de trabajo y corrigió minuciosamente esta tesina, le

agradezco sinceramente su confianza y todo el apoyo que me ha brindado. Al Dr.

Deodoro Oliveira le agradezco por su paciencia, disponibilidad y generosidad para

compartir sus conocimientos. Sin su ayuda y consejos yo no habría podido realizar este

trabajo.

Mis sinceros agradecimientos para la Dra. Violeta Rafael, la Dra. Laura Arcos

Terán y la Dra. Mar Marzo. Gracias a mis compañeras Nuria Rius y Yolanda Guillen con

quienes compartí gratos momentos durante el trabajo y para la Dra. Alejandra Delprat por

su guía al inicio de este estudio.

Finalmente, quiero agradecer las instituciones que me han apoyado para la

realización de este Máster. A la Secretaría Nacional de Ciencia y Tecnología del Ecuador

SENACYT por haberme concedido la Beca de Fortalecimiento Humano 2009, a la

Universidad Católica del Ecuador y a la Universidad Autónoma de Barcelona.