Eligheor

4
Dibujamos el diagrama de cuerpo libre: Llevamos las medidas de mm a metros: 280 = 0,28 180 = 0,18 100 = 0,10 Aplicando las ecuaciones de equilibrio obtenemos: ! = 0: βˆ’ 0,18 + 150 sin 30 0,10 + 150 cos 30 0,28 = 0 0 ,28 ! 0 ,18 ! 0 ,10 ! 30Β° ! ! 150 ! ! ! ! ! ! ! ! !

description

Eligheor

Transcript of Eligheor

Page 1: Eligheor

Dibujamos el diagrama de cuerpo libre:

Llevamos las medidas de mm a metros:

280  π‘šπ‘š = 0,28  π‘š 180 = 0,18  π‘š 100 = 0,10  π‘š

Aplicando las ecuaciones de equilibrio obtenemos:

𝑀! = 0:          βˆ’ 𝐴 0,18 + 150 sin 30 0,10 +   150 cos 30 0,28 = 0

0,28!!

0,18!!

0,10!!

30Β°

!

!

150!!

!!

!!

!

!

!

!!

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Β© 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΞ£ = βˆ’ =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΞ£ = + + =

380 N or 380 Nx x

C∴ = βˆ’ =C

( )0: 0.8 300 N 0y y

F CΞ£ = + =

N 240or N 240 =βˆ’=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

βŽ›

βˆ’βˆ’=⎟⎟

⎠

⎞⎜⎜⎝

βŽ›= βˆ’βˆ’

276.32380

240tantan

11

x

y

C

CΞΈ

or 449 N=C 32.3Β°β–Ή

Page 2: Eligheor

𝐴 =  150 sin 30 0,10 +   150 cos 30 0,28

0,18 = πŸπŸ’πŸ‘,πŸ•πŸ’  π‘΅

       π‘œ                    π΄ = 244  π‘   β†’    

𝐹! = 0:                    243,74+ 150 sin 30+  π·! = 0

𝐷! = βˆ’243,74βˆ’ 150 sin 30 = βˆ’πŸ‘πŸπŸ–,πŸ•πŸ’  π‘΅

𝐹! = 0:                  π·! βˆ’ 150 cos 30 = 0

𝐷! =   150 cos 30 = πŸπŸπŸ—,πŸ—πŸŽπŸ’  π‘΅

∴      π· =   𝐷!! +  π·!!  =   βˆ’318,74 ! +   129,904 ! = πŸ‘πŸ’πŸ’,𝟐𝟎  π‘΅

𝑦                            πœƒ =   tan!!𝐷!𝐷!

=   tan!!129,904βˆ’318,74 = βˆ’πŸπŸ,πŸπŸ•πŸ’Β°

π‘œ                π· =    344  π‘ πœƒ = 22,2Β°

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Β© 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΞ£ = βˆ’ =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΞ£ = + + =

380 N or 380 Nx x

C∴ = βˆ’ =C

( )0: 0.8 300 N 0y y

F CΞ£ = + =

N 240or N 240 =βˆ’=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

βŽ›

βˆ’βˆ’=⎟⎟

⎠

⎞⎜⎜⎝

βŽ›= βˆ’βˆ’

276.32380

240tantan

11

x

y

C

CΞΈ

or 449 N=C 32.3Β°β–Ή

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Β© 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΞ£ = βˆ’ =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΞ£ = + + =

380 N or 380 Nx x

C∴ = βˆ’ =C

( )0: 0.8 300 N 0y y

F CΞ£ = + =

N 240or N 240 =βˆ’=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

βŽ›

βˆ’βˆ’=⎟⎟

⎠

⎞⎜⎜⎝

βŽ›= βˆ’βˆ’

276.32380

240tantan

11

x

y

C

CΞΈ

or 449 N=C 32.3Β°β–Ή

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Β© 2007 The McGraw-Hill Companies.

Chapter 4, Solution 21.

Free-Body Diagram:

(a)

( ) 0in.9.0cos

in.2.4:0 =βˆ’βŽŸ

⎠

⎞⎜⎝

βŽ›βˆ’=Ξ£ spΞ’x FAΜα

or ( )8lb 1.2 in.

cos30sp

F kx k= = =Β°

Solving for k:

7.69800 lb/in.k = 7.70 lb/in.k = β–Ή

(b)

( ) 8 lb0: 3 lb sin30 0

cos30x x

F BβŽ› ⎞Σ = Β° + + =⎜ ⎟°⎝ ⎠

or 10.7376 lbx

B = βˆ’

( )0: 3 lb cos30 0y y

F BΞ£ = βˆ’ Β° + =

or 2.5981 lby

B =

( ) ( )2 210.7376 2.5981 11.0475 lb,B = βˆ’ + = and

1 2.5981tan 13.6020

10.7376ΞΈ βˆ’= = Β°

Therefore: 11.05 lb=B 13.60Β° β–Ή

Page 3: Eligheor

Dibujamos el diagrama de cuerpo libre:

Aplicando las ecuaciones de equilibrio obtenemos:

𝑀! = 0:                      π‘‡ 2π‘Ž + π‘Ž cosπœƒ βˆ’  π‘‡π‘Ž + π‘ƒπ‘Ž = 0

𝑇 =𝑷

𝟏+  πœπ¨π¬πœ½              (π‘Ž)

!! !

2!+ !

cos!

!

! !

!!

!!

!!

!!

!! !!

!!

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Β© 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΞ£ = βˆ’ =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΞ£ = + + =

380 N or 380 Nx x

C∴ = βˆ’ =C

( )0: 0.8 300 N 0y y

F CΞ£ = + =

N 240or N 240 =βˆ’=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

βŽ›

βˆ’βˆ’=⎟⎟

⎠

⎞⎜⎜⎝

βŽ›= βˆ’βˆ’

276.32380

240tantan

11

x

y

C

CΞΈ

or 449 N=C 32.3Β°β–Ή

Page 4: Eligheor

𝐹! = 0:                    πΆ! βˆ’ 𝑇 sinπœƒ = 0

𝐢! =  π‘» 𝐬𝐒𝐧𝜽          (𝑏) De la ecuaciΓ³n (a) en la ecuaciΓ³n (b) se tiene que:

𝐢! =  π‘· 𝐬𝐒𝐧𝜽𝟏+  πœπ¨π¬πœ½            (𝑐)

𝐹! = 0:                    πΆ! + 𝑇 + 𝑇 cosπœƒ βˆ’ 𝑃 = 0

𝐢! =  π‘·βˆ’ 𝑻 𝟏+ 𝐜𝐨𝐬𝜽              (𝑑) De la ecuaciΓ³n (a) en la ecuaciΓ³n (d) se tiene que:

𝐢! =  π‘ƒ βˆ’π‘ƒ 1+ cosπœƒ1+  cosπœƒ = 0

𝐢! = 0    ,                πΆ =  πΆ!

𝐢 =  π‘· 𝐬𝐒𝐧𝜽𝟏+  πœπ¨π¬πœ½          (𝑒)

π‘ƒπ‘Žπ‘Ÿπ‘Ž    πœƒ = 60Β°    π‘Ž  π‘‘π‘Ÿπ‘Žπ‘£π‘’π‘   π‘‘𝑒𝑙  π‘’π‘›π‘’π‘›π‘π‘–π‘Žπ‘‘π‘œ De la ecuaciΓ³n (a) se tiene que:

𝑇 =𝑃

1+  cosπœƒ =  π‘ƒ

1+  cos 60 =  π‘ƒ

1+  12=  

πŸπŸ‘   𝑷

De la ecuaciΓ³n (e) se tiene que:

𝐢 =  π‘ƒ sinπœƒ1+  cosπœƒ =  

𝑃 sin 601+  cos 60 =  

𝑃 0,87

1+  12=     𝟎,πŸ“πŸ– 𝑷

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Β© 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΞ£ = βˆ’ =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΞ£ = + + =

380 N or 380 Nx x

C∴ = βˆ’ =C

( )0: 0.8 300 N 0y y

F CΞ£ = + =

N 240or N 240 =βˆ’=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

βŽ›

βˆ’βˆ’=⎟⎟

⎠

⎞⎜⎜⎝

βŽ›= βˆ’βˆ’

276.32380

240tantan

11

x

y

C

CΞΈ

or 449 N=C 32.3Β°β–Ή

COSMOS: Complete Online Solutions Manual Organization System

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Β© 2007 The McGraw-Hill Companies.

Chapter 4, Solution 19.

Free-Body Diagram:

(a) From free-body diagram of lever BCD

( ) ( )0: 50 mm 200 N 75 mm 0C AB

M TΞ£ = βˆ’ =

300AB

T∴ =(b) From free-body diagram of lever BCD

( )0: 200 N 0.6 300 N 0x x

F CΞ£ = + + =

380 N or 380 Nx x

C∴ = βˆ’ =C

( )0: 0.8 300 N 0y y

F CΞ£ = + =

N 240or N 240 =βˆ’=∴yy

C C

Then ( ) ( )2 22 2380 240 449.44 N

x yC C C= + = + =

and °=⎟⎠

⎞⎜⎝

βŽ›

βˆ’βˆ’=⎟⎟

⎠

⎞⎜⎜⎝

βŽ›= βˆ’βˆ’

276.32380

240tantan

11

x

y

C

CΞΈ

or 449 N=C 32.3Β°β–Ή