ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... =...

17
Tema 2 Pg. nº 1/17 ESTADÍSTICA DESCRIPTIVA 1.- DISTRIBUCIONES UNIDIMENSIONALES. CÁLCULO DE PARÁMETROS PARÁMETROS DE CENTRALIZACIÓN En la búsqueda de la concreción y la simplificación, la información recogida en una tabla o gráfica estadística suele resumirse en unos pocos valores que nos informan del comportamiento de todos los individuos del colectivo estudiado. Estos valores, representativos de todos los datos de una distribución, se llaman parámetros o medidas de centralización. MEDIA ARITMÉTICA Media aritmética de una variable estadística es el cociente que resulta de dividir la suma de todos los valores por el número total de éstos. Se representa por x . Su cálculo se realiza, según las expresiones que siguen, atendiendo a la presentación de los datos. Para datos sin frecuencias Si la variable toma los N valores x1, x2,...,xn la media aritmética adopta la expresión: N x N x x x x i n ... 2 1 Para datos con frecuencias Si la variable toma los valores o marcas de clase x1, x2 , xn, siendo f1, f2,.... fn las frecuencias absolutas correspondientes de la distribución, la media aritmética se calcula con la expresión: N f x f f x f f f f x f x f x x i i i i i n n n ... ... 2 1 2 2 1 1

Transcript of ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... =...

Page 1: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 1/17

ESTADÍSTICA DESCRIPTIVA

1.- DISTRIBUCIONES UNIDIMENSIONALES. CÁLCULO DE PARÁMETROS

PARÁMETROS DE CENTRALIZACIÓN En la búsqueda de la concreción y la simplificación, la información recogida en una tabla o gráfica estadística suele resumirse en unos pocos valores que nos informan del comportamiento de todos los individuos del colectivo estudiado. Estos valores, representativos de todos los datos de una distribución, se llaman parámetros o medidas de centralización.

MEDIA ARITMÉTICA Media aritmética de una variable estadística es el cociente que resulta de dividir la suma de todos los

valores por el número total de éstos. Se representa por x .

Su cálculo se realiza, según las expresiones que siguen, atendiendo a la presentación de los datos.

Para datos sin frecuencias Si la variable toma los N valores x1, x2,...,xn la media aritmética adopta la expresión:

N

x

N

xxxx

in

...21

Para datos con frecuencias Si la variable toma los valores o marcas de clase x1, x2 , xn, siendo f1, f2,.... fn las frecuencias absolutas correspondientes de la distribución, la media aritmética se calcula con la expresión:

N

fx

f

fx

fff

fxfxfxx

ii

i

ii

n

nn

...

...

21

2211

Page 2: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 2/17

Para datos ponderados La media ponderada se calcula cuando todos los valores de la variable no tienen el mismo “peso”. Su fórmula es análoga a la vista con anterioridad, cambiando las frecuencias fi, por los pesos pi, y, en el denominador, N por la suma de todos los pesos pi , por lo que resulta:

i

ii

n

nn

p

px

ppp

pxpxpxx

...

...

21

2211

Consideraciones sobre la media aritmética.

La media aritmética es el parámetro de centralización más utilizado. Presenta la ventaja de tener en cuenta todos los datos de la distribución, además de

resultar muy sencillo su cálculo. Tiene el inconveniente de que si la distribución posee valores extremos,

excepcionalmente raros y pocos significativos, éstos producen una distorsión sobre el valor de la media.

No siempre es posible calcular la media aritmética y, a veces, aunque sea posible calcularla, carece de significado como sucede en las variables cualitativas o se trata de intervalos abiertos. En estos casos deben utilizarse otras medidas de centralización.

Si se suma una constante a todos los valores de la variable, la media aritmética aumenta en el mismo valor.

Si se multiplican todos los valores de la variable por un mismo número, la media queda multiplicada por el mismo número.

MODA

Se denomina moda de una variable estadística al valor de la variable que tiene mayor frecuencia absoluta. Se representa por Mo. La moda de una variable discreta es fácil de calcular, basta buscar el valor de la variable que presenta mayor frecuencia. Puede ocurrir que la moda no sea única, es decir, la distribución puede tener 2, 3 o más modas, recibiendo el nombre de bimodal, trimodal, etc. En el caso de que los datos se encuentren agrupados en intervalos, la clase con mayor frecuencia se denomina clase modal. Puede tomarse como moda la marca de clase de la clase modal. Si se desea mayor precisión en el cálculo de la moda, ésta puede obtenerse mediante la expresión:

DD

DcLM io

Li= Límite inferior del intervalo. C= Amplitud del intervalo.

D=Diferencia entre la frecuencia absoluta del intervalo modal y los vecinos.

Page 3: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 3/17

Cálculo de la moda por el método gráfico. Para las distribuciones que se encuentran agrupadas en intervalos existe un método gráfico muy sencillo que permite obtener la moda con bastante aproximación. Para ello se representa el histograma de frecuencias absolutas, al ser posible en papel milimetrado, con el fin de poder obtener mayor precisión. Seguidamente se unen, con líneas los extremos de la clase modal con las contiguas. La moda viene dada por la abscisa del punto de corte.

Consideraciones sobre la moda. Puede ocurrir que existan distribuciones que no tengan moda; eso ocurre cuando las

frecuencias de todos los datos, o casi todos, son iguales. Puede ser muy útil cuando se trata de variables cualitativas. En su cálculo no intervienen todos los datos de la distribución. Aun cuando es una medida de centralización, es relativamente frecuente encontrar

modas situadas en los extremos de la distribución. MEDIANA La mediana de una distribución estadística es el valor de la variable, tal que el número de datos menores que él es igual al número de datos mayores que él. Se representa por Me. Si la distribución es de una variable discreta y el número de datos es impar, la mediana es el valor central, y si el número de datos es par, la mediana es la media de los valores centrales. Si la distribución es de una variable continua, el intervalo que contiene a la mediana se denomina clase mediana o intervalo mediano. Puede tomarse como mediana, en una primera aproximación, la marca del intervalo mediano. Si se desea mayor precisión en el cálculo de la mediana, ésta se obtiene, dentro del intervalo mediano, mediante la expresión:

i

i

ief

FN

cLM1

2

Li= Límite inferior del intervalo. C= Amplitud del intervalo. N= Número total de datos Fi-1= Frecuencia absoluta acumulada de la clase anterior a la clase mediana. fi= Frecuencia absoluta de la clase mediana.

Variable discreta:

( 1)/2

e nN impar M X

/2 /2 1 / 2e n nN par M X X

Page 4: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 4/17

Consideraciones sobre la mediana. La mediana es particularmente útil en los siguientes casos:

Cuando entre los datos existen valores ostensiblemente extremos.

Cuando los datos están agrupados en intervalos y alguno es abierto. La mediana depende del orden de los datos y no de su valor. Cuando en su cálculo, el valor N/2 cae justo en el límite de un intervalo, se hace la media

entre la frecuencia de este y del posterior. Relación entre Media, Mediana y Moda. Si una distribución es simétrica o ligeramente asimétrica, se puede comprobar experimentalmente que se cumple la siguiente relación: Gracias a esta relación se puede obtener, con un cierto error, alguno de estos parámetros en función de los otros dos. Veamos a continuación tres distribuciones en las que se sitúan los parámetros:

CUANTILES

La mediana de los valores de una variable estadística divide a la distribución en dos partes iguales. Es decir, la mediana parte la distribución en dos mitades, cada una corresponde al 50% de los datos. Generalizando la idea anterior, se puede pensar en obtener valores que dividan a distribución en diversas partes iguales, dando lugar a los cuantiles. Los más importantes y usados, sobretodos en las ciencias sociales y médicas, son: CUARTILES Se llaman cuartiles a tres valores que dividen la distribución en cuatro partes iguales. Se representan y designan como cuartil primero (Q1), segundo (Q2 ) y tercero (Q3). Cada parte agrupa, por tanto, al 25%, al 50% y al 75% de los datos de la distribución.

Media – Moda = 3 (Media – Mediana)

Page 5: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 5/17

Es obvio que el segundo cuartil, por definición, coincide con la mediana. El cálculo de los otros cuartiles sigue las pautas de la mediana y se obtienen a través de las expresiones:

i

i

if

FN

cLQ1

14

DECILES Análogamente, se llaman deciles a nueve valores de la variable que dividen a la distribución en diez partes iguales. Es decir, los deciles agrupan a los datos en diez partes correspondientes cada una con el 10% de la distribución. Se representan por D1, D2, ..., D9 y la expresión que permite calcularlos es:

K=1, 2, 3,...,9

PERCENTILES De la misma manera, decimos que se llaman percentiles a 99 valores que divide la distribución en 100 partes iguales Se representa por P1, P2, ..., P99 y se calculan a través de la expresión

X=1, 2, 3,...,99

Cálculo gráfico de los cuantiles Para calcular gráficamente los cuantiles de una distribución existe un método muy sencillo que consiste en representar el polígono de frecuencias porcentuales acumuladas (Pi), situando en el eje abscisa la variable discreta o los intervalos, y en el eje de ordenadas los porcentajes correspondientes. Convine realizar la representación en papel milimetrado para mayor precisión.

i

i

if

FN

cLQ1

34

3

i

i

ikf

FkN

cLD1

10

i

i

ixf

FxN

cLP1

100

Page 6: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 6/17

Ejemplo.

Page 7: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 7/17

PARÁMETROS DE DISPERSIÓN Las medidas de centralización vistas con anterioridad necesitan de otras que las complementen en el estudio de las distribuciones de frecuencias de las variables estadísticas. Estas nuevas medidas, que denominamos parámetros de dispersión, informan de las desviaciones que sufren los datos respecto de los valores centrales, en especial con relación a la media aritmética. Los parámetros de dispersión más usuales son: RECORRIDO Recorrido o rango de una variable estadística es la diferencia entre el mayor y el menor valor de los datos observados. Se representa por R. Así, se tiene: R = Xmax - Xmin

VARIANZA Varianza de una variable estadística es la media aritmética de los cuadrados de las desviaciones de todos los datos o marcas de clase respecto de la media. Se representa por σ2 ó S2

Las expresiones equivalentes que permiten calcular la varianza son:

N

xxf ii

2

2)(

2

2

2 xN

xf ii

Es importante conocer que la varianza es siempre positiva, o nula en caso de que todos los valores de la variable sean iguales.

DESVIACION TIPICA Se denomina desviación típica de una variable estadística a la raíz cuadrada positiva de la varianza. Se representa por σ ó S.

N

xxf ii

2)(

2

2

xN

xf ii

Consideraciones sobre la desviación típica La desviación típica es el parámetro de dispersión más utilizado. Si se suma una constante a todos los valores de la variable, la desviación típica no

varía. Si se multiplican todos los valores de la variable por un mismo número, la desviación

típica queda multiplicada por el mismo número. No se puede calcular, es obvio, en el caso de que no se pueda calcular la media.

Page 8: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 8/17

ESTUDIO CONJUNTO DE x y σ

La media aritmética, x , y la desviación típica, σ , son los parámetros estadísticos por antonomasia. La media es la medida central más utilizada y la desviación típica es la medida de dispersión o variabilidad por excelencia. En toda distribución estadística, el estudio del comportamiento conjunto de la media aritmética y la desviación típica nos aporta numerosa información sobre la distribución de frecuencias estudiada. En casi todas las distribuciones estadísticas de comportamiento normal se verifican de forma aproximada los porcentajes descritos a continuación que, referidos a la media y la desviación típica, expresan la distribución de datos. Para una distribución estadística de comportamiento normal, se cumple:

En ( x -σ x +σ ) está el 68% del total de individuos.

En ( x -2σ x +2σ) está el 95% del total de individuos.

En ( x -3σ x +3σ) está el 99% del total de individuos.

Coeficiente de variación de Pearson Para comparar el grado de dispersión de dos o más distribuciones no podemos confrontar simplemente las desviaciones típicas, puesto que esas medidas de dispersión vienen afectadas por la escala de la medida representativa de la variable. Es necesario por lo tanto eliminar esa influencia convirtiendo dichas medidas en números abstractos. Para ello utilizaremos el coeficiente de variación de Pearson:

100x

cv

Como sabemos que las medidas de centralización son más representativas cuanto más

concentrada estén, vamos a establecer las siguientes condiciones:

Menos de 30% ALTA concentración, y por lo tanto la media es altamente representativa.

Entre 30% y 45% MEDIA concentración, y por lo tanto la media es medianamente representativa.

Mayor de un 45% BAJA concentración, y por lo tanto la media es poco o muy poco representativa.

El inconveniente que tiene C.V. es que deja de ser útil cuando la media es igual a 0.

Page 9: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 9/17

Coeficiente de asimetría de Pearson Una distribución será simétrica o asimétrica, según lo sea su representación gráfica. Será asimétrica hacia la derecha (asimetría positiva), o a la izquierda (asimetría negativa), si su representación gráfica está más estirada hacia la derecha o izquierda. La medida de asimetría más utilizada es el coeficiente de asimetría de Pearson: Si As = 0 No existe asimetría y por lo tanto la distribución es Simétrica.

Si As > 0 Existe Asimetría positiva o a la derecha.

Si As < 0 Existe Asimetría negativa o a la izquierda.

Ahora bien, por diversas razones, este coeficiente no se puede aplicar en los siguientes casos:

Cuando la distribución no es unimodal. En este caso, se puede solucionar aplicando la relación empírica:

Por lo que el coeficiente quedaría:

Cuando la distribución no es campaniforme, y especialmente cuando adopta forma de U. En este caso abría que aplicar el coeficiente G1, que no veremos.

x - Mo

As =

σ

Media – Moda = 3 (Media – Mediana)

3 ( x – Mediana)

As =

σ

Page 10: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 10/17

2.- Puntuaciones típicas o normalizadas Para poder comparar dos datos correspondientes a dos distribuciones distintas, hay que “tipificar o normalizar” dichos valores, es decir, calcular los valores “z” de cada uno de ellos por medio de:

Una vez obtenidos dichos valores se pueden comparar, ya que las distintas distribuciones están pasadas a unidades de desviación estándar, y por lo tanto perfectamente comparables. Las puntuaciones típicas o normalizadas, también llamadas puntuaciones z, tienen las siguientes propiedades:

Si se transforma una distribución en puntuaciones típicas, no varía la forma de la distribución original.

La media aritmética de las puntuaciones normalizadas es cero, es decir, 0z .

La desviación típica de las puntuaciones típicas es la unidad, es decir, 1z

)( xxz

Page 11: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 11/17

EJERCICIOS RESUELTOS 1. La estación meteorológica del Roque de los Muchachos registró 88 días de lluvia el pasado año,

según muestra la tabla siguiente:

Calcula la precipitación media durante los días de lluvia.

Litros/m2 Xi fi Fi

Xifi

[0, 5) 2,5 3 3 7,5

[5, 10) 7,5 7 10 52,5

[10, 15) 12,5 19 29 237,5

[15, 20) 17,5 23 52 402,5

[20, 25) 22,5 18 70 405

[25, 30) 27,5 12 82 330

[30, 35) 32,5 6 88 195

Σ 88 1630

N

fxx

ii ; 523,18

88

1630x

Por tanto, el año pasado la precipitación media durante los días de lluvia fue de 18,523 l/m2.

2. La calificación media que han obtenido los alumnos de Ingeniería Técnica Agrícola de cierta

Universidad, en la asignatura de Estadística durante los cuatro últimos cursos han sido: 5,8; 6,3; 6,7 y 7,2, respectivamente. En el primero de estos cursos se examinaron 180 alumnos, en el segundo 200, en el tercero 275 y en el cuarto 220. ¿Cuál es la calificación media de estos cursos en dicha asignatura?

Nota media Xi

N" de alumnos fi

xifi

5,8 180 1 044 6,3 200 1 260 6,7 275 1 842,5 7,2 220 1 584

Σ 875 5 730,5

Calcularemos la media aritmética ponderada, en la que el número de alumnos son los pesos correspondientes a las calificaciones medias de cada año.

i i

i

x fx

f ; 55,6

875

5,5730x

3. Calcula la moda y la mediana correspondiente a la variable litros/m2 durante los días de lluvia en

la estación meteorológica del Roque de los Muchachos, según la distribución citada en el ejercicio 1. La moda El mayor valor de la frecuencia, 23, corresponde al intervalo [15, 20) que recibe el nombre de intervalo modal. En una primera aproximación se puede tomar la moda como la marca de clase, es decir, Mo=17,5. Para obtener una mayor precisión utilizamos la fórmula:

DD

DcLM io

; 22,17)1823()1923(

1923515

oM

El dato que más se repite es de 17,22 litros/m2

La mediana El intervalo mediano es [15, 20), ya que contiene el dato 88/2=44.

i

i

ief

FN

cLM1

2

; 26,1823

292

88

515

eM

El 50% de los días de lluvia se recogieron más de 18,26 Litros/m2 y el otro 50% de los días por debajo.

Litros/m2 [0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, 30) [30, 35)

Nº de días 3 7 19 23 18 12 6

Page 12: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 12/17

4. Se ha pasado un test de 80 preguntas a 600 personas. El número de respuestas correctas se refleja en la siguiente tabla:

RESPUESTAS CORRECTAS

[0, 10) [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) [60, 70) [70, 80]

NÚMEROS DE PERSONAS

40 60 75 90 105 85 80 65

a) Efectuar la tabla de frecuencias y porcentajes. b) Determinar el primer y tercer cuartil. c) Determinar el tercer decil. d) Determinar el percentil 45. e) Una persona que respondió 64 preguntas, ¿qué percentil tiene? f) Se desea seleccionar a los 24 mejores, ¿a partir de cuántas preguntas se encuentran? g) Se selecciona al 40% de los mejores, ¿cuántas personas son y a partir de que puntuación se

encuentran?

Respuestas correctas

Marca clase

Xi

fi Fi hi Hi pi Pi

[0, 10) 5 40 40 0,067 0,067 6,7 6,7

[10, 20) 15 60 100 0,100 0,167 10 16,7

[20, 30) 25 75 175 0,125 0,292 12,5 29,2

[30, 40) 35 90 265 0,150 0,441 15 44,1

[40, 50) 45 105 370 0,175 0,617 17,5 61,7

[50, 60) 55 85 455 0,142 0,758 14,2 75,8

[60, 70) 65 80 535 0,133 0,892 13,3 89,2

[70, 80] 75 65 600 0,108 1 10,8 100

∑ 600 1 100

b)

i

i

if

FN

cLQ1

14

67.2675

10015010201

Q

El 25% de las personas acertaron menos de 27 preguntas.

41,5985

37045010503

Q

El 75% de las personas acertaron menos de 59 preguntas.

c) 55,3090

17510

6003

10303

D ; El 30% de las personas acertaron menos de 31 pregunta, o el

70% acertaron más de 31 preguntas.

d) 48,40105

265100

60045

104045

P ; El 45% de las personas con menos aciertos contestaron

correctamente como máximo 40 preguntas.

e) 80

455100

600

106064

x

; x=81,17% Tiene un percentil 81. También que el 19% de las personas

contestaron correctamente más de 64 preguntas.

f) 24 personas equivale al 4%; como se toman de la parte superior de la distribución

trabajamos con:

31,7665

535100

60096

107096

P Los 24 mejores tienen más de 76 preguntas contestadas

correctamente.

g) El 40% de las personas son 240 personas. 05,49105

265100

60060

104060

P ;

Esto quiere decir que el 40% de las personas que contestaron mejor, respondieron correctamente más de 49 preguntas.

Page 13: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 13/17

5. Completar la tabla del ejercicio 4 y determinar: a) La media. b) La moda. c) La mediana. d) La desviación típica. e) El grado de concentración de la distribución. f) Si consideramos que la distribución tiene un comportamiento “normal”, ¿entre qué valores se

encuentra el 95% de las personas que ocupan el centro de la distribución?

Respuestas correctas

Marca clase

Xi

fi Fi hi Hi pi Pi xifi Xi2fi

[0, 10) 5 40 40 0,067 0,067 6,7 6,7 200 1000

[10, 20) 15 60 100 0,100 0,167 10 16,7 900 13500

[20, 30) 25 75 175 0,125 0,292 12,5 29,2 1875 46875

[30, 40) 35 90 265 0,150 0,441 15 44,1 3150 110250

[40, 50) 45 105 370 0,175 0,617 17,5 61,7 4725 212625

[50, 60) 55 85 455 0,142 0,758 14,2 75,8 4675 257125

[60, 70) 65 80 535 0,133 0,892 13,3 89,2 5200 338000

[70, 80] 75 65 600 0,108 1 10,8 100 4875 365625

∑ 600 1 100 25600 1345000

a) N

fxx

ii ; 6,42

600

25600 x ;

b)

DD

DcLM io

; 286,442015

151040

oM

El número de preguntas acertadas que más se repite es 44.

c)

i

i

ief

FN

cLM1

2

; 3,43105

2652

600

1040

eM

El 50% de las personas respondieron correctamente menos 43 de preguntas.

d) 2

2

xN

xf ii

; 524,206,42

600

1345000 2

e) 100x

cv

; 105,481006,42

525,20 cv

Como es mayor de 45 se considera que tiene una concentración más bien baja.

f) Teniendo en cuenta que en el intervalo ( x -σ x +σ ) está el 68% del total de individuos

)19,63;14,22()205246,42;524,206,42(

Esto quiere decir, que el 68% de las personas del centro de la distribución contestaron entre 22 y 63 preguntas correctamente.

Page 14: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 14/17

6. Dadas las siguientes distribuciones:

Los pesos de los toros de lidia de una ganadería se distribuyen con una 5101 x kg y una 251 kg

Los pesos de los perros de una exposición canina se distribuyen con una 192 x kg y una

102 kg.

Determinar cuál de las dos distribuciones está más dispersa. La desviación típica de los pesos de la manada de los toros bravos es superior que la de los perros. Sin embargo, esos 25 kg son poca cosa para el enorme peso de los toros (es decir, los toros de esa manada son muy parecidos en peso), mientras que 10 kg en relación con el peso del perro es mucho (imaginamos que en la exposición canina habrá perros muy dispares: caniches, "salchichas", dogos, mastines... Comparando los coeficientes de variación: CVtoros=(25/510)100=4,9% CVperros=(10/19)100=52,6%. Con estos parámetros se ve claramente que el peso de los perros de la exposición canina es mucho más disperso que el de los toros de la manada.

7. Una empresa debe cubrir un cierto número de puestos de trabajo de dos tipos A, y B. Se somete a los

aspirantes a dos pruebas, ambas puntuables de 0 a 50, diseñadas para valorar sus aptitudes en uno y

otro tipo de trabajo. En la Prueba A, la media de calificaciones ha sido 28Ax , y la desviación típica

4,3A . En la B han sido, respectivamente, 24Bx y 1,2B . Dígase: ¿Qué tipo de puesto de

trabajo asignaríamos a un aspirante que hubiera obtenido 33 puntos en la prueba A y 28 en la B?

En ambos casos se halla por encima de la media. Su puntuación es más alta en la prueba A (33 frente a 28), así como su desviación respecto de la media (+5 frente a +4). No obstante, valorar igual los puntos obtenidos en ambas pruebas puede ser un error de apreciación". En efecto: Las desviaciones típicas indican que los resultados de la prueba B se hallan más agrupados que los de la A. En esas condiciones, "cuatro puntos sobre la media" en la prueba B puede indicar mayor aptitud para el trabajo B, frente a los demás aspirantes, de lo que indican "cinco puntos sobre la media" en la prueba para el trabajo A. Saldremos de dudas calculando e interpretando las puntuaciones típicas del aspirante en ambas pruebas. Son

471,14,3

2833

AZ 905,1

1,2

2428

BZ

Esto significa que su calificación en la prueba A se halla "1,471 desviaciones" sobre la medía y, en la prueba B, "1,905 desviaciones” sobre la media. Por tanto, está más cualificado para ocupar un puesto de trabajo tipo B que un puesto tipo A, si lo comparamos con el resto de los aspirantes.

Page 15: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 15/17

EJERCICIOS

1. Se ha tallado a los alumnos de un cierto curso y se ha llegado a los siguientes resultados, que se dan en el orden en que se obtuvieron (en centímetros):

173, 166, 177, 171, 153, 179, 169, 174, 162, 173, 1 70 173, 175, 166, 177, 156, 167, 173, 178, 172, 169, 174, 180, 159, 182, 168, 169, 161, 170, 166, 165, 185, 169, 172, 180, 186, 167, 172, 166, 162, 170, 158, 184, 179, 162, 159, 183, 163, 172, 163, 174, 164, 171, 163, 173, 170, 174, 168, 162, 164, 171, 174, 185, 166, 156, 175, 188, 167, 171, 151, 169, 173, 172, 154, 174, 173, 170, 175, 172, 176, 174, 169, 157, 160, 174, 177, 171, 176, 163, 171. Determinar: a) La media. b) La moda. c) La mediana. d) El primer cuartil. e) El segundo decil. f) El percentil 65. g) El porcentaje de alumnos con una estatura superior a 176. h) Un alumno tiene una estatura de 168 cm. ¿qué percentil tiene? i) La desviación típica. j) ¿Están los datos muy dispersos? k) Si se desea seleccionar el 68% de los alumnos que forman la parte central de la distribución ¿entre qué

estaturas estarán los alumnos? l) Representa los datos con una gráfica adecuada.

2. Los pesos (en kilogramos) de los enfermos de una cierta residencia sanitaria son:

64, 84, 67, 64, 81, 98, 78, 77, 48, 76, 65, 47, 55, 60, 73, 67, 42, 92, 50, 78, 52, 78, 70, 62, 61, 62, 70, 56, 69, 90, 67, 57, 60, 75, 71, 63, 66, 85, 51, 57, 65, 76, 59, 81, 43, 74, 69, 55, 63, 90, 52, 63, 66, 44, 94, 65, 44, 89, 71, 68, 58, 51, 65, 87, 96, 50, 53, 61, 83, 80, 48, 60, 80, 71, 53, 55, 85, 75, 69, 84, 67, 68, 53, 72

Determinar: a) La media. b) La moda. c) La mediana. d) El primer cuartil. e) El segundo decil. f) El percentil 65. g) El porcentaje de enfermos con un peso superior a 82 kg. h) Un enfermo tiene un peso de 68 kg. ¿qué percentil tiene? i) La desviación típica. j) ¿Están los datos muy dispersos? k) Si se desea seleccionar el 68% de los enfermos que forman la parte central de la distribución ¿entre qué

pesos estarán? l) Representa los datos con una gráfica adecuada.

3. Se ha pasado un test de 80 preguntas a 600 personas. El número de respuestas correctas se refleja en la siguiente

tabla:

RESPUESTAS CORRECTAS

NUMERO DE PERSONAS

[0, 10) 40

[10, 20) 60

[20, 30) 75

[30, 40) 90

[40, 50) 105

[50, 60) 85

[60, 70) 80

[70, 80) 65

Determinar: a) La media. b) La moda. c) La mediana. d) El primer cuartil. e) El percentil 65. f) El porcentaje de personas con más de 58 respuestas

correctas. g) Una persona que responde correctamente 66

preguntas, ¿qué percentil tiene? h) La desviación típica. i) ¿Están los datos muy dispersos?

Page 16: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 16/17

EJERCICIOS

1. Se ha tallado a los alumnos de un cierto curso y se ha llegado a los siguientes resultados, que se dan en el orden en que se obtuvieron (en centímetros):

173, 166, 177, 171, 153, 179, 169, 174, 162, 173, 1 70 173, 175, 166, 177, 156, 167, 173, 178, 172, 169, 174, 180, 159, 182, 168, 169, 161, 170, 166, 165, 185, 169, 172, 180, 186, 167, 172, 166, 162, 170, 158, 184, 179, 162, 159, 183, 163, 172, 163, 174, 164, 171, 163, 173, 170, 174, 168, 162, 164, 171, 174, 185, 166, 156, 175, 188, 167, 171, 151, 169, 173, 172, 154, 174, 173, 170, 175, 172, 176, 174, 169, 157, 160, 174, 177, 171, 176, 163, 171. Determinar: a) La media. b) La moda. c) La mediana. d) El primer cuartil. e) El segundo decil. f) El percentil 65. g) El porcentaje de alumnos con una estatura superior a 176. h) Un alumno tiene una estatura de 168 cm. ¿qué percentil tiene? i) La desviación típica. j) ¿Están los datos muy dispersos? k) Si se desea seleccionar el 68% de los alumnos que forman la parte central de la distribución ¿entre qué

estaturas estarán los alumnos? l) Representa los datos con una gráfica adecuada.

Estatura

en cm. xi fi Fi hi Hi xifi Xi2fi

[150 155) 152,5 3 3 0,033 0,0333 457,50 69768,75

[155 160) 157,5 6 9 0,067 0,1000 945,00 148837,50

[160 165) 162,5 12 21 0,133 0,2333 1950,00 316875,00

[165 170) 167,5 17 38 0,189 0,4222 2847,50 476956,25

[170 175) 172,5 32 70 0,356 0,7778 5520,00 952200,00

[175 180) 177,5 11 81 0,122 0,9000 1952,50 346568,75

[180 185) 182,5 5 86 0,056 0,9556 912,50 166531,25

[185 190) 187,5 4 90 0,044 1,0000 750,00 140625,00

90 1,000 15335,00 2618362,50

a) 90

15335x 170,39 cm b)

2115

155170oM 172,08 cm

c)

32

38455170eM 171,09 cm d)

17

214

90

51651Q 165,44 cm

e)

12

910

902

51602D 163,75 cm f)

32

38100

9065

517065P 173,20 cm

g) 22,8011

70100

90

5175176

x

x

; El 20% aprox. h) 6,3417

21100

90

5165168

x

x

; El perc. 35

i) 239,17090

5,2618362 7,75658 j) 55,4100

39,170

75658,7CV Muy concentrado

0

5

10

15

20

25

30

35

1

[150 155)

[155 160)

[160 165)

[165 170)

[170 175)

[175 180)

[180 185)

[185 190)

Page 17: ESTADÍSTICA DESCRIPTIVA - gobiernodecanarias.org · = Límite inferior del intervalo. ... = Frecuencia absoluta acumulada de la clase anterior a la clase mediana. f i = Frecuencia

Tema 2

Pg. nº 17/17

2. Los pesos (en kilogramos) de los enfermos de una cierta residencia sanitaria son:

64, 84, 67, 64, 81, 98, 78, 77, 48, 76, 65, 47, 55, 60, 73, 67, 42, 92, 50, 78, 52, 78, 70, 62, 61, 62, 70, 56, 69, 90, 67, 57, 60, 75, 71, 63, 66, 85, 51, 57, 65, 76, 59, 81, 43, 74, 69, 55, 63, 90, 52, 63, 66, 44, 94, 65, 44, 89, 71, 68, 58, 51, 65, 87, 96, 50, 53, 61, 83, 80, 48, 60, 80, 71, 53, 55, 85, 75, 69, 84, 67, 68, 53, 72

Determinar:

a) La media. b) La moda. c) La mediana. d) El tercer cuartil. e) El sexto decil. f) El percentil 35. g) El porcentaje de enfermos con un peso superior a 82 kg. h) Un enfermo tiene un peso de 68 kg. ¿qué percentil tiene? i) La desviación típica. j) ¿Están los datos muy dispersos? k) Si se desea seleccionar el 95% de los enfermos que forman la parte central de la distribución ¿entre qué pesos

estarán? l) Representa los datos con una gráfica adecuada.

Pesos

en kg xi fi Fi hi Hi xifi Xi2fi

[40 45) 42,5 4 4 0,048 0,048 170 7225

[45 50) 47,5 3 7 0,036 0,083 142,5 6768,75

[50 55) 52,5 9 16 0,107 0,190 472,5 24806,25

[55 60) 57,5 8 24 0,095 0,286 460 26450

[60 65) 62,5 12 36 0,143 0,429 750 46875

[65 70) 67,5 15 51 0,179 0,607 1012,5 68343,75

[70 75) 72,5 8 59 0,095 0,702 580 42050

[75 80) 77,5 8 67 0,095 0,798 620 48050

[80 85) 82,5 7 74 0,083 0,881 577,5 47643,75

[85 90) 87,5 4 78 0,048 0,929 350 30625

[90 95) 92,5 4 82 0,048 0,976 370 34225

95 100) 97,5 2 84 0,024 1,000 195 19012,5

84 1,000 5700 402075

5700) x=

84a 67,857 kg o

3) M 65 5

3 7b

66,5 kg e

42 36) M 65 5

15c

67 kg

3

63 59) Q 75 5

8d

77,5 kg 6

50,4 36) D 65

15e

69,8 kg

35

29,4 24) P 60 5

12f

62,25 kg

8467

100) 82=80+57

x

g

x=83,09 kg; 100-83,09=16,9117%

x 8436

100) 68=65+5 ;15

h

x=54 2402075

) = 67,85784

i 13,492 kg

13,492) CV= 100 20%

67,857j No ) ( 2 , 2 ) 95%; (40,87; 94,84)k X X entre 41 y 95 kg.