FUERZAS ESTRUCTURALES

2
FUERZAS ESTRUCTURALES Cuando hablamos de fuerzas estructurales, nos referimos al esfuerzo que debe soportar la estructura de una Montaña Rusa. En una estructura predeterminada, se analizan muchos esfuerzos, pero los esfuerzos estructurales que más se consideran son los esfuerzos de compresión, y el esfuerzo de flexión de los materiales. El esfuerzo de compresión se calcula con la siguiente fórmula: e = F / A Dónde: e = Esfuerzo (Ej. Newton sobre metro cuadrado, Kilogramo fuerza sobre milimetro cuadrado, etc.) F = Fuerza (Ej. Newtons o Kilogramo Fuerza. 1 Newton = 1 Kilogramo por metro sobre segundo al cuadrado, y 1 Kilogramo Fuerza = 9.81 Newtons) A = Área (Ej. metro cuadrado, pié cuadrado, centimetro cuadrado, etc.) El cálculo de los esfuerzos de compresión, se utilizará para los casos en que la fuerza se aplica sobre el eje de la estructura. En este caso, vemos una columna que sostiene la vía de una Montaña Rusa. En el momento que el tren pasa por la columna, el peso ejerce una fuerza sobre el eje de la columna. El área que se tiene que considerar, es área que tenga la sección de la columna. En este caso es una sección circular cómo se muestra en el círculo con la A.

description

FUERZAS ESTRUCTURALES

Transcript of FUERZAS ESTRUCTURALES

Page 1: FUERZAS ESTRUCTURALES

FUERZAS ESTRUCTURALES

Cuando hablamos de fuerzas estructurales, nos referimos al esfuerzo que debe soportar la estructura de una Montaña Rusa. En una estructura predeterminada, se analizan muchos esfuerzos, pero los esfuerzos estructurales que más se consideran son los esfuerzos de compresión, y el esfuerzo de flexión de los materiales.

El esfuerzo de compresión se calcula con la siguiente fórmula:

e = F / A

Dónde:

e = Esfuerzo (Ej. Newton sobre metro cuadrado, Kilogramo fuerza sobre milimetro cuadrado, etc.)

F = Fuerza (Ej. Newtons o Kilogramo Fuerza. 1 Newton = 1 Kilogramo por metro sobre segundo al cuadrado, y 1 Kilogramo Fuerza = 9.81 Newtons)

A = Área (Ej. metro cuadrado, pié cuadrado, centimetro cuadrado, etc.)

El cálculo de los esfuerzos de compresión, se utilizará para los casos en que la fuerza se aplica sobre el eje de la estructura. En este caso, vemos una columna que sostiene la vía de una Montaña Rusa. En el momento que el tren pasa por la columna, el peso ejerce una fuerza sobre el eje de la columna. El área que se tiene que considerar, es área que tenga la sección de la columna. En este caso es una sección circular cómo se muestra en el círculo con la A.

El esfuerzo de flexión máxima es el esfuerzo que se aplica sobre alguna de las caras laterales de una viga. Este esfuerzo se calcula con diferentes fórmulas según diferentes casos. Pero antes de analizar cada caso, es importante mencionar el concepto de momento de inercia:

Page 2: FUERZAS ESTRUCTURALES

El momento de inercia es una propiedad geométrica de un área con respecto a un eje de referencia. La explicación de este concepto requiere de conocimientos matemáticos medianamente elevados, por lo que nada más se mencionará su uso práctico aplicado a las Montañas Rusas.

El cálculo del momento de inercia depende de la forma que tenga la sección del material que se esté analizando. En el caso de las montañas rusas, se cuentan con 3 tipos de secciones. La circular, la cilíndrica, y la rectangular. Aquí se muestran las secciones con sus respectivas fórmulas. I = Momento de inercia.

Otro concepto importante es el momento flexionante que al igual que el momento de inercia requiere una explicación matemática compleja. Por este motivo nos limitaremos a mencionar los casos que más se aplican a las Montañas Rusas. M = Momento máximo Flexionante, y P = Fuerza aplicada.