REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf ·...

18
REACCIONES DE LA SUPERFICIE DEL VIDRIO CON SOLUCIONES ACUOSAS. J.A. Hernández Povedano y J.L. Oteo Mazo. Instituto de Cerámica y Vidrio, C.S.I.C. RESUMEN Se presenta en este trabajo una revisión exhaustiva de las reacciones de la superficie del vidrio con soluciones acuosas y de las diferentes variables que las rigen (pH, temperatura, tiempo de reacción, relación área de la superficie del vidrio expuesta al ataque/volumen de solución atacante, etc.). La revisión se completa con el estudio de dichas reacciones desde el punto de vista de la superficie en sí misma, describiendo en profundidad los diferentes tipos de superficies que pueden obtenerse por el ataque de vidrios con soluciones acuosas, así como la constitución y la composición de las capas su- perficiales obtenidas. Por último, se hace un estudio de la cinética de estas reacciones. Este trabajo se verá complementado con otro que describirá las técnicas instrumentales más impor- tantes para el estudio de las superficies de vidrio. SUMMARY This paper presents an exhaustive revision of the reactions of glass surface with aqueous solutions and of the different variables that rule them (pH, temperature, reaction time, ratio: glass surface area exposed to attack/attacking solution volume, etc.). The revision is completed with the study of the above mentioned reactions from the point of view of the seruface itself, describing in detail the different types of surfaces that may be obtained by attacking glasses with aqueous solutions, together with a description of the constitution and the com- position of the surface layers obtained. Finally, a study is made of the kinetics of these reactions. This work shall be complemented with another that will describe the most important instrumental techniques for the study of glass surfaces. ZUSAMMENFASSUNG Die Arbeit bringt einen umfassenden Überblick über die Oberflächenreaktionen von Glas mit wässrigen Lösungen und die sie bestimmenden Variablen (pH-Grad, Temperatur, Reaktionsdauer, Verhältnis der der Atzwirkung ausgesetzten Glasoberfläche zum Volumen der ätzenden Lösung usw). Dieser Überblick wird durch eine Untersuchung der Reaktionen unter dem Aspekt der Oberfläche an sich ergänzt, wobei die einzelnen Oberberflächentypen ausfürlich beschrieben werden, die durch Atzung von Gläsern mit wässrigen Lösungen erhalten werden, sowie Beschaffenheit und Zusammen- setzung der resultierenden Oberflächenschichten. Abschliessend wird die Kinetik dieser Reaktionen behandlet. Die Arbeit soll später durch eine Beschreibung der wichtigsten instrumentellen Verfharen zur Untersuchung von Glasoberflächen noch ergänzt werden. 1. INTRODUCCIÓN RESUME On présente dans ce travail une revision exhaustive des réactions de la superfice du verre avec des solutions aqueuses des différentes variables qui les régissent (pH, temperature, temps de réaction, rela- tion aérienne de la superficie du verre exposée a Tataque/volume de la solution attaquante, etc. La révision se complète avec l'étude de ces réactions depuis le point de vue de la superfice e soi- même, décrivant en profundeur les divers types de superfices qui prevent s'obtenir de l'attaque de ve- rres avec des solutions aqueuses, ainsi que la constitution et la composition des capes superficielles obtenues. Finalment, on fait une étude de la cinétique de ces réactions. On verra ce travail complementé avec un autre qui décriera les tecniques instrumentales plus im- portantes pur l'étude des superfices en verre. Es evidente la importancia que ha adquirido en la actua- lidad el conocimiento de la fisicoquímica de las superficies de los vidrios como basé para abordar el estudio de los dife- rentes e importantes problemas que afectan a este material, dado que es la superficie la que gobiema todas sus interac- ciones con el medio ambiente. Uno de los aspectos más importantes de estas interaccio- nes, y por lo tanto más estudiados, ha sido el de la resisten- cia de la superficie del vidrio al ataque por agentes químicos y en especial por soluciones acuosas, si bien hasta hace muy pocos años no pudo ser tratado exhaustivamente, por la fal- ta de técnicas adecuadas para este estudio. Es en los últimos años cuando proliferan una serie de técnicas cuya utiliza- ción suministra un elevado conocimiento de la composición y estructura de la superficie del vidrio. En la Tabla I (1) (2) se presenta una recopilación de estas técnicas, caracteriza- das según su técnica instrumental (tipo de detección y tipo de excitación) y la profundidad a la que realizan el anáHsis. Como resultado del empleo de estas técnicas se sabe aho- ra con total seguridad que la composición de la superficie del vidrio es en la mayoría de los casos muy diferente a la de la masa (1) (2) (3) (4) y que dicha diferencia en la com- posición se puede extender a capas de muchos micrómetros de profundidad. Estas capas son sin duda consecuencia de la interacción de la superficie del vidrio original (con una composición definida) con el medio ambiente que le rodea, a través de una serie de reacciones, determinadas por unas variables (historia térmica, tiempo, etc.) que caracterizarán finalmen- te la superifice formada. En este trabajo pretendemos desarrollar y profundizar en el conocimiento de estas variables refiriéndonos casi ex- clusivamente a vidrios sodocálcicos y siHcatos alcalinos, re- visando el estado actual de nuestros conocimientos sobre las reacciones de este tipo de vidrios con soluciones acuosas y las variables que afectan a las reacciones superficiales, las transformaciones químicas que tienen lugar en estas super- B0L.S0C.ESP.CERAM.VIDR.V0L.21 - NUM.2 81

Transcript of REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf ·...

Page 1: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

REACCIONES DE LA SUPERFICIE DEL VIDRIO CON SOLUCIONES ACUOSAS.

J.A. Hernández Povedano y J.L. Oteo Mazo. Instituto de Cerámica y Vidrio, C.S.I.C.

RESUMEN Se presenta en este trabajo una revisión exhaustiva de las reacciones de la superficie del vidrio con

soluciones acuosas y de las diferentes variables que las rigen (pH, temperatura, tiempo de reacción, relación área de la superficie del vidrio expuesta al ataque/volumen de solución atacante, etc.).

La revisión se completa con el estudio de dichas reacciones desde el punto de vista de la superficie en sí misma, describiendo en profundidad los diferentes tipos de superficies que pueden obtenerse por el ataque de vidrios con soluciones acuosas, así como la constitución y la composición de las capas su­perficiales obtenidas. Por último, se hace un estudio de la cinética de estas reacciones.

Este trabajo se verá complementado con otro que describirá las técnicas instrumentales más impor­tantes para el estudio de las superficies de vidrio.

SUMMARY This paper presents an exhaustive revision of the reactions of glass surface with aqueous solutions

and of the different variables that rule them (pH, temperature, reaction time, ratio: glass surface area exposed to attack/attacking solution volume, etc.).

The revision is completed with the study of the above mentioned reactions from the point of view of the seruface itself, describing in detail the different types of surfaces that may be obtained by attacking glasses with aqueous solutions, together with a description of the constitution and the com­position of the surface layers obtained. Finally, a study is made of the kinetics of these reactions.

This work shall be complemented with another that will describe the most important instrumental techniques for the study of glass surfaces.

ZUSAMMENFASSUNG Die Arbeit bringt einen umfassenden Überblick über die Oberflächenreaktionen von Glas mit

wässrigen Lösungen und die sie bestimmenden Variablen (pH-Grad, Temperatur, Reaktionsdauer, Verhältnis der der Atzwirkung ausgesetzten Glasoberfläche zum Volumen der ätzenden Lösung usw).

Dieser Überblick wird durch eine Untersuchung der Reaktionen unter dem Aspekt der Oberfläche an sich ergänzt, wobei die einzelnen Oberberflächentypen ausfürlich beschrieben werden, die durch Atzung von Gläsern mit wässrigen Lösungen erhalten werden, sowie Beschaffenheit und Zusammen­setzung der resultierenden Oberflächenschichten.

Abschliessend wird die Kinetik dieser Reaktionen behandlet. Die Arbeit soll später durch eine Beschreibung der wichtigsten instrumentellen Verfharen zur Untersuchung von Glasoberflächen noch ergänzt werden.

1. INTRODUCCIÓN

RESUME On présente dans ce travail une revision exhaustive des réactions de la superfice du verre avec des

solutions aqueuses des différentes variables qui les régissent (pH, temperature, temps de réaction, rela­tion aérienne de la superficie du verre exposée a Tataque/volume de la solution attaquante, etc.

La révision se complète avec l'étude de ces réactions depuis le point de vue de la superfice e soi-même, décrivant en profundeur les divers types de superfices qui prevent s'obtenir de l'attaque de ve­rres avec des solutions aqueuses, ainsi que la constitution et la composition des capes superficielles obtenues. Finalment, on fait une étude de la cinétique de ces réactions.

On verra ce travail complementé avec un autre qui décriera les tecniques instrumentales plus im­portantes pur l'étude des superfices en verre.

Es evidente la importancia que ha adquirido en la actua­lidad el conocimiento de la fisicoquímica de las superficies de los vidrios como basé para abordar el estudio de los dife­rentes e importantes problemas que afectan a este material, dado que es la superficie la que gobiema todas sus interac­ciones con el medio ambiente.

Uno de los aspectos más importantes de estas interaccio­nes, y por lo tanto más estudiados, ha sido el de la resisten­cia de la superficie del vidrio al ataque por agentes químicos y en especial por soluciones acuosas, si bien hasta hace muy pocos años no pudo ser tratado exhaustivamente, por la fal­ta de técnicas adecuadas para este estudio. Es en los últimos años cuando proliferan una serie de técnicas cuya utiliza­ción suministra un elevado conocimiento de la composición y estructura de la superficie del vidrio. En la Tabla I (1) (2) se presenta una recopilación de estas técnicas, caracteriza­das según su técnica instrumental (tipo de detección y tipo de excitación) y la profundidad a la que realizan el anáHsis.

Como resultado del empleo de estas técnicas se sabe aho­ra con total seguridad que la composición de la superficie del vidrio es en la mayoría de los casos muy diferente a la de la masa (1) (2) (3) (4) y que dicha diferencia en la com­posición se puede extender a capas de muchos micrómetros de profundidad.

Estas capas son sin duda consecuencia de la interacción de la superficie del vidrio original (con una composición definida) con el medio ambiente que le rodea, a través de una serie de reacciones, determinadas por unas variables (historia térmica, tiempo, etc.) que caracterizarán finalmen­te la superifice formada.

En este trabajo pretendemos desarrollar y profundizar en el conocimiento de estas variables refiriéndonos casi ex­clusivamente a vidrios sodocálcicos y siHcatos alcalinos, re­visando el estado actual de nuestros conocimientos sobre las reacciones de este tipo de vidrios con soluciones acuosas y las variables que afectan a las reacciones superficiales, las transformaciones químicas que tienen lugar en estas super-

B0L.S0C.ESP.CERAM.VIDR.V0L.21 - NUM.2 81

Page 2: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

Tabla I TECNtCAS PARA EL ANAUSIS DE SUPERFICIES DE VIDRIOS.

MÉTODOS TIPO DE

EXCITACIÓN TIPO DE DETECCIÓN

PROFUNDIDAD DE ANALISIS |

ANAUSIS QUÍMICO POR ESPECTROSCOPIA

ELESTRONICA. (ESCA) hJJ e^ 5- 20 A

ESPECTROSCOPIA ELECTRÓNICA AUGER. (A ES) e" e" 5- 20 A ESPECTROSCOPIA DISPERSIVA DE IONES (ISS) Ion Ion 5- 20 A ESPECTROSCOPIA DE MASAS DE ION SECUNDARIO. (SIMS) Ion Ion 5- 20 A RADIACIÓN INDUCIDA POR HAZ IÓNICO. 5- 20 A

DECAPADO CON HAZ DE IONES Ar Y POSTERIOR

UTILIZACIÓN DE LAS TÉCNICAS ANTERIORES. 5-2000 A

ELIPSOMETRIA. hp hdJ <:I0-::^I000 Á

ESPECTROSCOPIA DE REFLEXION INFRARROJA. (IRRS) hJJ hJJ 0'2'0'5yUnn

MICROSONDA ELECTRÓNICA. (EMP) e' hU l'öjlm MICROSCOPIO ELECTRÓNICO DE BARRIDO (SEM-

CON ENERGÍA DISPERSIVA DE RAYOS X. EDXA) e' e" l'öjlm 1 ANÁLISIS DIELÉCTRICO DE SUPERfíCIES e" e" ^1-10Jim ESPECTROSCOPIA DE FLUORESCENQA DE RAYOS X h¡J hll lOyàm

ficies, así como los mecanismos y cinética de estas reaccio­nes.

En una próxima publicación se repasarán en profundidad los diferentes métodos instrumentales utilizados en la carac­terización de las superficies, como son: la espectroscopia de electrones Auger, el análisis químico por espectroscopia electrónica (ESCA), la espectroscopia IR y la caracteriza­ción superficial por métodos de adsorción.

2. VARIABLES QUE AFECTAN A LAS REACCIONES SUPERFICIALES DE LOS VIDRIOS.

Multitud de investigadores han tratado el tema de la reacciones de los vidrios del tipo SÍO2.M2O y Si02.CaO. M2O (donde M2O es un óxido alcalino) con soluciones acuosas y en todos los casos están de acuerdo en que éstas pueden concretarse en dos tipos fundamentales: a) Reacciones de desalcalinización que dominan a pH < 9 y

que están regidas por mecanismos de intercambio iónico entre los iones alcalinos del vidrio y los H*" de la disolu­ción, en los que la difusión está controlada por la raíz cuadrada del tiempo de reacción o de lixiviación (1) (4) (5) (6).

b) Reacciones de disolución de la red de SÍO2 por ruptura de los enlaces Si-O-Si en la interfase entre la solución y el vidrio. Estas reacciones dominan a pH > 9 y están cinéti­camente controladas por una dependencia lineal con, el tiempo de reacción.

Cuando ambas reacciones se dan simultáneamente en un intervalo de pH determinado, podemos caracterizar en el comportamiento cinético un período de transición al que nos referiremos más adelante.

En principio pueden aceptarse estas generalidades para otro tipo de vidrios como son los silicobóricos, etc., si bien en este caso son pocos los resultados experimentales que permiten aclarar las peculiaridades que pueden ocurrir en estos vidrios u otros con más de un formador de red.

Como vemos existe una correspondencia directa entre el tipo de reacción, el pH de la solución atacante y el tiempo de exposición del vidrio a esta solución, a las que se unen otras importantes variables que afectan a estas reacciones tal y como podremos apreciar en la discusión que se plantea a continuación.

2.1. INFLUENCIA DE LA RELACIÓN AREA DE VI­DRIO ATACADO/VOLUMEN DE SOLUCIÓN ATA­CANTE (SA/V).

Experimentos relativamente recientes realizados por El-Shamy y col. (7) han demostrado que la velocidad de reac­ción aumenta al incrementarse la relación Area de la super­ficie del vidrio atacado/Volumen de solución atacante (SA/ V).

Al aumentar la razón SA/V disminuye también el perío­do de transición entre las reacciones de desalcalinización y las reacciones de disolución de red, como puede verse en la figura 1 (4), en la cual se muestra el tiempo necesario para alcanzar un pH = 9 , frente a la razón SA/V para vidrios de diferentes composiciones y a diferentes temperaturas.

Como puede apreciarse el aumento de la relación SA/V se puede utilizar para acelerar las reacciones de ataque en los estudios de laboratorio si bien, es muy importante controlarla para conseguir una buena precisión en las medi­das experimentales. Dicho control se facilita utilizando su­perficies de vidrio planas (varillas de vidrio), en lugar de pol-

82

Page 3: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

(a)

10 10' 10" 10' 10 ö" Razón SA/V (cm'')

10"

Fig.l. Tiempo necesario para que la solución atacante alcance un pH = 9 frente a la razón SA/V para vidrios de diferentes com­posiciones y a diferentes temperaturas.

vos de vidrio, debido a que estos últimos pueden dar lugar a células de concentración, que pueden originar aumentos locales de la razón efectiva SA/V, causando así un incre­mento rápido del pH de la solución (1).

Este hecho explica por qué el envejecimiento debido al medio ambiente de dos artículos de vidrio en contacto ínti­mo es mucho más rápido que el del mismo vidrio aislado ex­puesto al mismo medio ambiente. En el primer caso la ra­zón SA/V es varios órdenes de magnitud superior, por lo que las reacciones de disolución« de red se alcanzan con ma­yor rapidez.

2.2. INFLUENCIA DE LA TEMPERATURA. Otra de las variables que influyen de una forma decisiva

en las reacciones superficiales de los vidrios es la temperatu­ra, ya que el ataque de un vidrio por soluciones acuosas es un proceso cinético (8) que en general puede expresarse co­mo,

V = K e x p ( . E /RT) [ 1 ]

siendo É^ la energía de activación del proceso que se ha eva­luado en '^20 kcal/mol, para la mayoría de los vidrios estu­diados. Es evidente, por lo tanto, que un leve aumento en la temperatura produce un gran incremento en la velocidad de reacción.

Experimentos realizados por Rana y Douglas (9), por Scholze y col. (5) y por Ramachandran y col. (10) en vi­drios sodocálcicos y E, atacados por soluciones acuosas, co­rroboran este hecho como puede verse en la figura 2, en la que se observa que la cantidad de sodio lixiviada con respec­to a la raíz cuadrada del tiempo de lixiviación y la elimina­ción de AI2O3 y CaO respecto a la misma variable, aumen­tan al incrementarse la temperatura. Ramachandran y col. deducen de este hecho que el aumento de la temperatura provoca una Hgera expansión de la red del vidrio y como consecuencia un aumento en la movilidad iónica.

Estos resultados pueden llevamos a pensar que el aumen­to de la temperatura es una forma aceptable de acelerar los

E 400

3 300 o

i 200|

O ^00\ jf-hf^

^

- ^

/80SC

60°C

500 1000 1500 2000 2500

\/T¡empo de lixiviación (S ' ) —•

(b)

16

o 14

8 12 o

•o X

° 10

£ 6

.0 Al 30°C • AI102°C vCa 30°C

•fCa102°C

10 100 I.ÓOO

Tiempo de lixiviación (min.) 10000

Fig. 2. Influencia de la temperatura en la velocidad de extracción de los óxidos componentes de un vidrio.

(a) Vidrio 20°/o Na20. 6^/0 CaO. 74^/o SÍO2 (°/o en moles) atacado con CIH O'l N. _

(b) Fibra de vidrio E atacada con CIH 4 N.

procesos de ataque en el estudio de este tipo de reacciones. Sin embargo , los métodos de aceleración en autoclave con aumentos grandes de temperatura y presión utilizados habi-tualmente, no parecen ser muy fiables ya que alteran los procesos de reacción superficial tendiendo a forzar la reacción hacia las etapas de disolución de red (1), tal y co­mo han demostrado Clark y Hench (4) al comparar el ata­que en autoclave de los vidrios sodocálcicos comerciales, con el ataque de estos mismos vidrios por H2O destilada a 37^C, obteniendo mediante espectroscopia Auger combina­da con decapado iónico, los perfiles de composición de las superficies que se obtienen en ambos casos. Como puede apreciarse en la figura 3, mientras que el ataque con agua da lugar a una capa rica en SÍO2 y una pérdida de sodio hasta una profundidad de 400-600 Ây de calcio hasta 100-200 Â, el tratamiento en autoclave da lugar a una capa en la que la lixiviación de sodio y calcio es mucho menor y la pelícu­la rica en SÍO2 es mucho más delgada. El anáÜsis de las solu-

BOL.SOC.ESP.CERAM.VIDR.VOL.21 - NUM.2 83

Page 4: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

1001

^o 40!

(a)

VIDRIO SODOCALCICO COMERCIAL DESPUES DEL ATAQUE POR H2O

. DURANTE 1 HORA A 37®C —

200 400 600 800 1000 1200 1400 600

Profundidad (K)

100

80

¿ 60 c

>P 40

20

(b)

tSi02

VIDRIO SODOCALCICO COMERCIAL DESPUES DEL ATAQUE POR HPO DURANTE 1 HORA A 121,5°C-

200 400 600 800 1000 1200 1400 1600

Profundidad (Â)

Fig. 3.Perfiles de composición obtenidos por Espectroscopia de Electrones Auger combinada con un Decapado iónico, para un vidrio sodocálcico comercial atacado por H2O a 37 C (a) y en condiciones de autoclave (b).

Clones resultantes demostraba igualmente que en el trata­miento en autoclave se encuentra SÍO2 disuleta, mientras que no es así en el tratamiento con H2O a 37^C, lo que puede atribuirse al aumento de la solubüidad en H2O de la SÍO2 hidratada a altas temperaturas, mientras que esta solu­bilidad es muy baja a temperatura ambiente.

2.3. INFLUENCIA DE LOS IONES PRESENTES EN LA DISOLUCIÓN ATACANTE.

Quizás sea este uno de los aspectos menos tratados a la hora de hacer un estudio de la atacabilidad de los vidrios por las disoluciones acuosas, aunque algunos investigadores

15 00

12 09 06 03 00 Na 03 06 09 12 15 K

Composición

15 00

12 09 06 03 03 06 09 12

Composición

03 00 Na 12 I 5 K

Composición

Fig. 4. (a) Concentración total de iones alcalinos en la solución ata­cante frente a lacomp^ción del vidrio original, (b) Concen­traciones de Ca y Si en la solución atacante frente a la composición del vidrio original para vidrios mezclados quími­camente, (c) Variación de la solución atacante frente a la composición del vidrio original para vidrios mezclados quími­camente y mecánicamente.

84

Page 5: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

le han dado una gran importancia estudiando tanto la in­fluencia de los cationes presentes como la de los aniones.

Respecto a la presencia de los cationes, Dilmore y col. (11) han realizado un interesante estudio sobre la resisten­cia al ataque químico de algunos vidrios del sistema SÍO2. CaO. Na20. K2O, comparando la atacabilidad de los vidrios que contienen los dos alcalinos (vidrios de álcali mixto, con la de dos vidrios, uno de sodio y otro de potasio, mezclados

(a)

•O

*> 0>

•o

o CVJ

£

4 0

30

2 0

• {Na+)=ON

o(Na+) = 0-lN

100 200 Tiempo (minj

300

40

30

20

10

•o

E

pHi9

(Na*) = 0 y

^Na*) =0-lN

4 0

20

H 2 0

200 3 0 0 O

Tiempo (min.)

100 2 0 0 3 0 0

Fig. 5. Variación de la extracción de K2O con el tiempo para un vi­drio 85°/oSi02-15^/0 K2O Cío en moles) atacado con solu­ciones acuosas de diferentes pH que contienen una pequeña concentración de otro ion alcalino.

mecánicamente en una proporción que mantenga una rela-ción^de alcalinos^ sijiilar a la de Ip^ vidrios mixtos ^ (

La presencia de los dos alcalinos en la disolución altera el proceso de lixiviación, disminuyendo la extracción con res­pecto a la de las disoluciones que contienen un sólo alcali­no, tal y como puede apreciarse en la figura 4a. La aporta­ción a este comportamiento, del efecto alcalino mixto en la

1 disolución, es menor que la que tiene lugar cuando éste se da en el vidrio y los dos iones van siendo extraídos del mis­mo.

Por otro lado, El-Shamy y col (6) han demostrado que la presencia de iones N^ en la solución atacante de un vidrio de SÍO2-K2O provoca una alteración en la extracción de po­tasio que es prácticamente despreciable (figura 5), observán­dose tan sólo una pequeña disminución en la velocidad de desalcalinización.

A nuestro entender este hecho no está en contradicción con lo expuesto anteriormente, ya que en este caso el efec­to debido a la presencia de álcalis mixtos en la solución aparecería después de un cierto tiempo en el que se hubie­ra llegado a una extracción adecuada de potasio, a lo cual se sumaría, como ya hemos indicado, la menor influencia del efecto alcalino mixto en la solución.

En el caso de disoluciones en las que estén presentes otros iones no alcalinos, entre los que podemos considerar al Ca "*", algunos investigadores (1) han señalado que la pre­sencia de este ion en la disolución cuando se atacan vidrios de SÍO2. R2O (R= Na, K, Li, . . . ) , aumenta la velocidad de disolución de la red^ En el caso de la adición de iones Al "*" pueden observarse dos hábitos de comportamiento (1) (4) cuando se atacan vidrios de SÍO2. LÍ2O, según se ve en la figura 6. Para concentraciones < 10 ppm de Al "*" se ob­serva un aumento en los procesos de desalcalinización y di­solución de red ya que los iones Al " son incapaces de pasi-var todos los centros activos de la red. Para concentraciones > 25 ppm de Al "*", los iones Al "*" se difunden dentro de la superficie del vidrio con lo que, si bien la velocidad de de­salcalinización no se altera, disminuye mucho la tendencia a la disolución de la red.

En cuanto se refiere a la presencia de diferentes aniones en la disolución, El-Shamy (12) ha estudiado el ataque de vidrios de los sistemas Si02-CaO-Na20 y Si02-Na20 por

10"

r o

•o

-o o

10"

10°

l i l i l í CORROSION ESTÁTICA DE LA MASA DF VIDRIO 3 DIAS A 100 °C SA/V = 0 ,77cm-' VIDRIO 3 3 % L12O.6 7 % SiOa

0

[-1- — I I •—

50 100 150

PPM ^C^(^LCL^)

200 250

.M Fig. 6. Concentración de Si en la solución frente a la concentra­ción de iones Al añadidos a la solución de corrosión.

BOL.SOC.ESP.CERAM.VIDR.VOL.21 - NUM.2 85

Page 6: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

soluciones acidas, concluyendo que la cantidad de CaO y Na20 extraída, depende bastante del tipo de anión presen­te en la disolución (figura 7) observando que los iones Cl" y NO 3 , que forman sales muy solubles con el Ca "*", extraen mucho más CaO que el anión SO^^ que forma uiía sal poco soluble. Estudios similares (23) en vidrios del sistema SÍO2-PbO muestran que las extracciones de PbO por soluciones acidas con distintos aniones estaban directamente relaciona­das con la solubilidad de la sal a que da lugar el anión y el catión lixiviado.

HCl HNO3

^2^VIDRI0207oNa20.20%Ca0.y^ HCl 6 0 % Sil

I 2

Log. t ( min.)

Flg. 7. Variación de la extracción de CaO y Na20 con el tipo de anión de la solución atacante, para un vidrio 20^/0 Na20. 20°/oCaO.60°/oSiO2 C/o en moles).

2.4. INFLUENCIA DE LA COMPOSICIÓN DEL VIDRIO Como hemos comentado anteriormente, la composición

y la estructura de la superficie guarda una relación funda­mental con la composición y la estructura inicial del vidrio, por lo que ésta influirá de una manera total en su reacción con las soluciones acuosas, tanto en las reacciones de desal-calinización como en las de disolución de la red. En general, los vidrios con alto contenido en modificadores de red serán resistentes a los procesos de disolución de red (pH > 9) y los vidrios con alto contenido en formadores de red serán resistentes a los procesos de desalcalinización. A continua­ción trataremos una serie de casos que ilustrarán los com­portamientos particulares. uT

2.4.1 .Efecto alcalino mixto (MAE). Como es sabido, el aumento del contenido en alcalinos

del vidrio, incrementa poderosamente el ataque por disolu­ciones acuosas. Por otro lado, sabemos que los procesos de desalcalinización estarán más favorecidos en aquellos vidrios cuyo ion alcalino tenga un coeficiente de difusión más ele­vado, esto es, su movilidad iónica es mayor.

En el caso de los vidrios con más de un óxido alcalino (vidrios de álcali mixto) la velocidad de corrosión por efec­to de disoluciones acuosas disminuye en comparación con la de vidrios que contienen un sólo ion alcalino en su com­

posición (1) (4) (11), a este fenómeno se le conoce como "Efecto Alcalino Mixto (MAE)".

Algunos estudios han sugerido que el efecto alcaUno mixto es consecuencia de las modificaciones estructurales introducidas en el vidrio al disminuir la movilidad de los iones alcaÜnos (11). Weyl y Marboe argumentan que la pre­sencia simultánea de dos especies alcalinas en la composi­ción del vidrio produce un estrechamiento de las nueves electrónicas que rodean al oxígeno no puente, lo cual pro­voca una estructura en el vidrio que retarda la difusión de iones alcalinos y disminuye la probabilidad del cambio ió­nico protón-ión alcalino (13). Lengyel y Boksay por su parte, corroboran este argumento proponiendo que en los vidrios con efecto alcalino mixto el camino de difusión de una de las especies alcalinas está parcialmente bloqueado por la presencia de la segunda especie alcaHna (14).

Dilmore y col. (11) han llevado a cabo un interesante es­tudio sobre la resistencia química de los vidrios de Na20. K2O.CaO.SiO2 cuando son atacados por soluciones acuo­sas, utiHzando dos tipos de mezclas: una química, en la que el vidrio alcaÜno mixto se obtiene por fusión y otra fí­sica, que se obtiene mecánicamente con vidrios que sólo contienen una especie alcaHna. El estudio del ataque realiza­do sobre un ampHo espectro de composiciones, proporciona resultados que pueden compararse para composiciones equi­valentes.

En la figura 4a se presenta la relación entre la molaridad de la solución atacante y la composición de los vidrios, pu­diéndose observar que en la mezcla química (efecto alcalino mixto) se obtienen menores velocidades de desalcaliniza­ción que en la mezcla mecánica. Por otro lado, al comparar la atacabilidad de los vidrios simples con la de los vidrios mezclados mecánicamente, se observa la existencia del efec­to alcaHno mixto en la solución, que ya comentamos en el párrafo 2.3.

Como puede apreciarse este efecto es más patente para el vidrio de coniposición 12^/o Na20. 3^/o K2O. lO^/o CaO. 75^/0 SÍO2 ( /o en moles) en el que existe un mínimo de extracción.

En la figura 4b se muestran las concentraciones de iones Si "*" y Ca " en la solución, frente a la composición del vi­drio para mezclas químicas, haciéndose patente de nuevo la existencia de un mínimo en la extracción de estos iones pa­ra el vidrio 12^/o Na20. 3 % K2O. lO^/o CaO. 75*/o SÍO2, lo que sugiere que la disolución de estos iones está controlada por una cinética de difusión, si bien esto no im­plica que estos iones se disuelvan mediante un proceso de difusión, sino que sus disoluciones son parte de una serie de reacciones de corrosión involucradas en la difusión de otras especies (11).

Es fácil deducir de lo hasta aquí expuesto, que el efecto alcalino mixto es un fenómeno que afecta a la difusión de los iones alcalinos y que por tanto tendrá una notable in­fluencia en los procesos de desalcalinización, pero no en los de disolución de red. Por este motivo, cualquier otro fenó­meno que acelere el paso del proceso de desalcalinización al de disolución de red, hará que el efecto alcalino mixto re­duzca mucho su influencia en estas reacciones.

En la figura 4a se observa cómo el aumento en la rela­ción SA/V hace que el efecto alcalino mixto sea más acusa­do .Esto es debido a que para una relación SA/V = ?".? cm '^ el pH de la solución atlante después de 12 h. y a 100 C es '^ 7.7 con lo que el mecanismo dominante es la difusión de iones alcalinos y el efecto alcalino mixto tendrá una gran influencia a estos pHs. Sin embargo, para las otras

86

Page 7: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

2 3 4 5 6 Tiempo de corrosion (días)

1 2 3 4 5 6 7 Tiempo de corrosion (dios)

Fig. 8. Variación del pH de la solución (A) y de la concentración to­tal de iones alcalinos en la solución (B) frente al tiempo de corrosión para vidrios con y sin Efecto Alcalino Mixto.

composiciones, el pH después de 12 h a lOO^C es de 9, con lo que el mecanismo dominante es el de la disolución de la red, y en el efecto alcalino mixto tiene muy poca importan­cia. Por otra lado, cuando SA/V = 0.77 cm~^, el pH final de la disolución para todas las composiciones es < 9 y el efecto alcalino mixto será patente en todos los casos, como de­muestra en la figura 4c.

Otro factor que condicionará el efecto alcalino mixto es el tiempo de exposición de los vidrios al ataque. En la figura 8a se compara el pH frente al tiempo de corrosión para dos vidrios sodocálcicos, con y sin álcali mixto, observándose que en los 3 primeros días el pH de la disolución atacante del segundo vidrio es mayor que para la del primero, no alcanzándose durante este período el pH = 9 , con lo que el efecto alcalino mixto está influyendo en la extracción de los iones alcalinos tal y como puede verse en la figura 8b.

A partir de los 3 días el pH en ambas soluciones se iguala alcanzando un valor de 9.5, a partir del cual la influencia del efecto alcalino mixto desaparece.

Como conclusión podemos añadir que el efecto alcalino mixto dependerá muy directamente del mecanismo de ata­que de los vidrios, así como de la cinética del mismo, de forma que fenómenos como el aumento del pH, el aumento de la relación SA/V, el aumento de la temperatura, etc., que provocan un rápido paso de procesos de desalcalinización a los procesos de disolución de red, harán que el efecto alcali­no mixto disminuya y que llegue a desaparecer cuando el mecanismo dominante es el de disolución de red.

Además, y debido a este efecto, la adición de un peque­ño procentaje de un ion alcalino poco soluble, ayuda a esta­bilizar un vidrio más soluble, al producir una capa rica en SÍO2 más estable (3).

2.4.2. Efecto del CaO en la composición del vidrio. La sustitución de SÍO2 por CaO hasta una cierta propor­

ción en los vidrios del sistema SÍO2.R2O (R = Li, Na, K,

. . .) , provoca un importante aumento de la resistencia del vidrio, por consolidación de la estructura, desfavoreciendo los procesos de desalcalinización. Hench (3) ha realizado un estudio comparativo del ataque por soluciones acuosas de los vidrios 20^/0 Na^O. lO^/o CaO. 70°/o SÍO2 y 20°/o Na20. 80^/o SÍO2 ( /o en moles) encontrando dos razones que explican la influencia del CaO.

80

•o

J 60

40

20

CORROSION A 100 °C CON SOLUCIÓN ACUOSA ESTÁTICA

Recientemente pulido

1400 1200 1000

N° de ondas (cnn'M

800

Fig. 9. Comparación del espectro de reflexión IR de una película es­table rica en CaO-Si02 de un vidrio 20^/o Na20. 10^/oCaO. 70 /0SÍO2 ( /o en moles) con el de una película inestable formada en un vidrio 20°/oNa2O.80°/oSiO2 (^/o en moles).

B0L.S0C.ESP.CERAM.VIDR.V0L.21 - NUM.2 87

Page 8: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

En primer lugar, la sustitución de CaO aumenta mucho el acoplamiento entre los modos vibracionales de los enlaces Si-0 no puente y los de la red Si-O-Si, como puede verse es­tudiando los espectros de reflexión de los vidrios antedichos en la región de 1400 a 800 cm"^, que se presenta en la figu­ra 9, y en la que se observa el aumento que tienen lugar en la intensidad de reflexión entre los picos S (asignado al en­lace Si-O-Si) y el NSX (atribuido al enlace Si-0 no puente-modificador), en el vidrio temario con respecto al binario.

En segundo lugar, cuando los iones Na^ son extraídos durante la corrosión, producen la formación de una película más estable rica en CaO-Si02 que actúa como barrera a la difusión de los iones alcalinos, lo cual se evidencia en la fi­gura 9 al observarse un desplazamiento del pico correspon­diente al enlace Si-O-Si hacia valores del número de ondas más alto y la desaparición del pico atribuido al enlace Si-0 no puente-ión modificador.

El-Shamy y col (12) han estudiado el efecto de tres áci­dos distintos sobre la resistencia de vidrios sodocálcilos con diferente composición, observando que la extracción, tanto de CaO como de Na20, disminuye al sustituir en el vidrio SÍO2 por CaO, observándose un mínimo a valores del lO^/o molar de CaO. Para contenidos superiores al 15^/o de CaO, el CaO provoca aumentos drásticos en la extracción de los óxidos del vidrio, apreciándose que cuando existe CaO en la composición del vidrio, e'ste es extraído por la solución atacante, si bien la extracción de óxidos es mínima hasta va­lores del 15^/0 CaO. Se observa también que la extracción de Na20 es directamente proporcional a la extracción de CaO, manteniéndose en la disolución extraída la misma re­lación Na20/CaO que en el vidrio y que esta extracción es aparentemente independiente del contenido en Na20 (12), lo que puede explicarse porque la extracción de CaO da ori­gen a una capa lixiviada rica en SÍO2 con una estructura más abierta que la del vidrio original y a la formación de grupos SiOH que faciütan el movimiento de los iones alca­linos.

2.4.3. Efecto del AI2O3 en la composidón del vidrio. La sustitución de SÍO2 por AI2O3 en un vidrio de SÍO2.

R^Q (R = Li, Na K, . ..) con la formación de grupos [ AIO4 ] en el retículo vitreo, reduce la velocidad de lixivia­ción de los iones alcalinos. Al consolidarse la red del vidrio se reduce el efecto de la corrosión debida a las bases, de for­ma que la transición de los procesos de desalcalinización a los de disolución de red se realiza a valores de pH más al­tos (1). " _ _

Sin embargo,^cuando la razón AI2O3/R2O — 1, el ion Al " actúa como modificador de red y la atacabiüdad por los ácidos aumenta.

2.5. INFLUENCIA DE LA HISTORIA TÉRMICA DEL VIDRIO.

Es lógico suponer que el historial térmico de un vidrio influye mucho en la estructura del mismo y por lo tanto en su resistencia química frente a las soluciones acuosas. Sin embargo, los datos experimentales concretos sobre este as­pecto del problema son escasos. Scholze (5) ha comparado la resistencia al ataque ácido de láminas de vidrio sodocálci-co recocidas con otras enfriadas bruscamente, observando que las láminas recocidas acusan un desDrendimiento de io­nes alcalinos aproximadamente un 30^/o menor que las templadas.

2.6. INFLUENCIA DEL pH DE LA DISOLUCIÓN Y DEL TIEMPO DE ATAQUE.

El-Shamy y col (6) han llevado a cabo un estudio de la velocidad de extracción del R2O (R = Li, Na, . . .), CaO y SÍO2 en vidrios de sílice, silicato alcaHno y silicato sodocál-cico, atacados por soluciones acuosas con diferentes pH. En el caso de la SÍO2 fundida la velocidad de extracción de SÍO2 permanece constantemente hasta un valor de pH ^ 9 , a partir del cual la velocidad de extracción sufre un aumen­to brusco al incrementarse el valor de pH, indicando tam­bién que para un mismo valor de pH la cantidad de SÍO2 ex­traída y el tiempo de ataque mantienen una relación lineal.

Para los vidrios del tipo R2O.SÍO2 (R= Li, Na, K), la cantidad de iones alcalinos extraídos a pH constante, es función del tiempo de lixiviación (figura 5) según la ecua­ción:

Q = K t bi [ 2 ]

donde Q es la cantidad de iones alcalinos extraídos en el tiempo t, y K es una constante.

Experimentos realizados por Rana, Das y Douglas (9) (15) (16), atacando vidrios del tipo SÍO2.R2O y Si02.CaO. R2O (R = Na y K) con soluciones acuosas no tamponadas, indicaron que a bajas temperaturas y tiempos cortos, a es igual a 1/2, mientras que a altas temperaturas y tiempos lar­gos, Oi se aproxima a 1. El-Shamy y col. (6) usand^ solucio­nes tamponadas observaron que a variaba entre 0.5 yiO.36-siendo este valor constante para cada experimento y man-teiéndose en muchos casos hasta un valor de t = 4h.

(a)

0.2

0.1

< , F '

< ¡0

5 7 pH

(b)

13

%

o o

é l X E <^ CD CM 10

o CM t

O CO

en

0.8 0.8

/

0.4 / /

0.4

1 / 1 < » >

>

o I 3 5 7 9 II 13 pH

Fig. 10. (a) Variación de la velocidad de extracción de LÍ2O (mg de LÍ20/gr de vidrio. \^'];) con el pH. (b) Variación de la SÍO2 extraída con el pH. A una temperatura de 35°C y paia un vidrio 33 /o LÍ2O.67 °/oSi02 ("/o en moles).

88

Page 9: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

( a ) (b )

150

100

o CVI

o

^ 5 0

1 I r VIDRIO 7 5 % Si02.X%CaO.(25-X)%Na20 (% en mol.)

\JV (min.) vT" (min.)

Fig. 11. Variación de la extracción de Na20 en función de t - /^ .

Para los distintos valores del pH, la velocidad de extrac­ción de óxido alcalino permanece constante hasta un valor de pH TT 9 a partir del cual existe una disminución brusca a medida que aumenta el pH, como puede observarse en la figura 10a, en la que puede verse también, que la velocidad de extracción en agua pura difiere de la de pH = 7 y se ase­meja más a la de pH = 9 5 lo cual es debido al aumento en el valor del pH a que da lugar la lixiviación. La velocidad de extracción de SÍO2, en estos vidrios, en función del pH mantiene una tendencia inversa a la de extracción de óxido alcalino, como puede apreciarse en la figura 10b.

En el caso de vidrios sodocálcicos, Youssefí y col. (17) han demostrado que la cantidad de Na20 extraído aumen­ta linealmente con la raíz cuadrada del tiempo de lixivia­ción (figura 11), hasta valores de t = 400 minutos, por en­cima del cual la extracción de Na20 permanece cte.Por su parte, El-Shamy y col. (6) observan que para un vidrio simi­lar, figura 12a, la velocidad de extracción de óxido alcalino frente al pH de la disolución mantiene una teuidencia similar a la de los vidrios de silicato alcalino, si bien cuando &\ con­tenido en CaO = lO^/o la velocidad de extracción de óxido alcalino, va disminuyendo lentamente con el aumento del

pH, hasta llegar a un pH'^ 9 en el que esta disminución se hace mucho más brusca, tal y como se ve en la figura 12b, En este tipo de vidrios la extracción de óxido alcalino va acompañada de una lixiviación de CaO significativa, como ya comentamos y justificamos en el parágrafo 2.4.2. Youssefi y col. (17) han observado igualmente que para pH < 9, la cantidad de extracción de SÍO2 es muy débil pe­ro que, para un pH= 10 esta extracción de SÍO2 se hace significativa y depende del contenido en CaO del vidrio, observando que existe un mínimo para un l O /o de CaO (^/o moles) y que para valores superiores e inferiores a este 10^/0 la cantidad de SÍO2 extraída aumenta brucamente.

Youssefi y Paul (17) explican el comportamiento de los vidrios sodocálcicos y silicatos alcaHnos en función de su es­tabilidad química, que depende a su vez de su estabilidad termodinámica, esto es, que el equilibrio corresponde al mínimo posible de energía Hbre, y de su estabilidad cinéti­ca, esto es, a la no existencia de equilibrio cinético, lo que hace posible que el sistema puede evolucionar muy lenta­mente.

El que influya un factor más que otro dependerá de las codicones a que se vea sometido el vidrio, aunque, si consi-

( a )

0.3

0-2

0-1

o H2O

VIDRIO 2 5 % Na20.5%Ca0.7p\%Si02 ( % en moles)

13 pH

(b)

o

0-16 "" ^ - c

i 0-08

VIDRIO 25% NoaO. IO%Ca0.657oSi O2 \ 0-08 (% en nr toles)

\

\

12 pH

Fig. 12. Variación de la velocidad de extracción de Na20 en fun­ción del pH de la solución atacante para dos vidrios sodocál­cicos con distinta composición y a 35 C.

B0L.S0C.ESP.CERAM.VIDR.V0L.21 - NUM.2 89

Page 10: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

TABLA II (17)

Datos termodinámicos que conciemen a las reacciones de algunos vidrios de algunas composiciones con el agua a 25^C.

Reacción

1. Si02(vidrio) + 6HF(Hq.) Z=: SiFf (ag.) + 2H2O + IH"" (ag.) 2. Si02(vidrio) +H2O (liq.)r=: H2SÍO3 3. H2SÍO3 m HSiO^ + H"" 4. HSiO^ZUSiOf+H'-5. Na2Si03(crist.) + 2 H ^ 3 I : H 2 S Í 0 3 4-2Na'-(ag.) 6. CaSi03 (crist.) +2H'" = H2Si03 +Ca2+(ag.)

7. CaO (crist.) +H2O (liq.) ZZCa (0H)2 8. Ca(0H)2 +H''(ag)Zi:Ca(OH)'-4-H20(Hq.) 9. Ca(0H)2 +2H''(ag.)Z=:Ca2-'+2H20(liq.)

(cal/mol)

- 11.20 4- 5.590 + 13.640 + 16.360 -28.880 - 16.780 - 13.240 -13.910 -31.120

PgK

+ 8.080 - 4.098 - 10.000 - 11.994 + 21.440 + 12.300 + 9.710 + 10.190 + 22.890

Relación

lg(SiF26-)=8.08+2pH ;ig(H2Si03) =-4.098 lg(HSiO 3) = 14.098 +pH 1 g (SiOD =-26.092+2pH 1 g(H2Si03)=21.44-2:1 gNa-' - 2pH lg(H2Si03)=12.3-lgCa2+2pH lgCa(0H)2 =9.710

.lgCa(OH)'- = 19.89-pH ]gCa2-' = 32.59-2pH

deramos una mayor influencia de la estabilidad termodiná­mica, la estabilidad del vidrio dependerá sobre todo de la estabilidad de los óxidos que lo componen, que es función de la actividad del óxido en el vidrio, así como de sus cons­tantes de equilibrio de hidratación, ionización y acompleja-miento.

Estos mismos autores consideran que puede tomarse co­mo base de partida el conocimiento de los datos termodiná­micos para las diferentes reacciones de estos óxidos con so­luciones acuosas de diferentes pH, a 25^C y 1 atm de pre­sión, y que se muestran en la Tabla II.

Como se observa en la ecuación 2 la solubilidad de la síli­ce en un medio ácido o neutro es muy débil e independien­te del pH y sólo cuando el pH de la solución aumenta por encima de 9, la sílice pasa a la solución en forma de iones HSÍO3 y SiOl' (ecuaciones 3 y 4), tal y como se representa en la figura 13. Según esta interpretación a pH < 10 la sílice no disociada en forma hidratada, SÍO3H2, sería la especie química presente en la disolución, mientras que a valores de 10 <_pH < 12 lo sería el SÍO3H". A valores de pH>12 es el SiO^ la especie dominante.

Si consideramos ahora el caso de los vidrios alcalinos en los que puede darse una reacción entre el Si03Na2 y el H2O especificada en la ecuación 5, la actividad del SÍO3H2 en solución dependerá de la de los iones Na*" en la solución 'y del pH^de la misma. En esta ecuación se observa que a va­lores bajos de pH el equilibrio se desplaza hacia la derecha.

a* o

2

0

-2

-4

2

0

-2

-4

1 > 3

w 2

0

-2

-4

yi w 2

0

-2

-4 HpS O3

• rOTAL

^ ^ SiOaN /ITREA

2

0

-2

-4

' ^ 1 1

CUARZO

-6 ^ y^ ^ /\ i 13

pH

Mg. 13. Diagrama de estabilidad de la sílice vitrea y del cuarzo en presencia de soluciones acuosas de diferente pH y a 25 C.

O sea hacia la lixiviación de iones alcalinos y como,

log (H2Si03)=2f .44 - 2 Ig Na"- - 2 pH

la solubilidad de la sílice aumentará cuanto mayor sea la ac­tividad de los iones alcalinos en la solución y cuanto mayor sea el pH.

En el caso de vidrios sodocálcicos la ecuación 6 muestra el intercambio entre iones Ca " del vidrio y los H*" de la di­solución, pudiéndose observar que la actividad del SÍO3H2 en solución, o sea la solubilidad de la síHce, dependerá de la actividad de los iones Ca " en solución y del pH de la mis­ma. Sin embargo es importante hacer constar que, en este caso, la solubiHdad del Ca (0H)2 es mucho menor que la del NaOH en los vidrios de silicato alcalino y que por tanto una débil concentración de iones Ca " en la solución, pro­voca una elevada actividad del Ca " , lo que da lugar a que altos valores de la actividad de Ca " en solución, no impli­quen grandes extracciones de Ca "*" en el vidrio.

A valores de pH bajos, la extracción de Ca "*" se ve favore­cida, pero en este caso el SÍO3H2 no se ioniza" dando lugar a una barrera de potencial para la difusión del calcio a tra­vés de la capa que forma, que es lo que hace que los vidrios sodocálcicos sean muy resistentes hasta pH < 10. Por otro lado, vidrios que contienen más de un lO^/o (en mol) de CaO en su composición, son menos resistentes a la acción de soluciones acuosas, ya que el exceso de CaO puede au­mentar la actividad de la sílice de manera desproporciona­da.

Aunque el caso de los vidrios silicobóricos merecerá una atención más detallada en otro momento, no queremos ter­minar esta revisión sin referimos a los datos obtenidos por Ramachandran y col. (10) en el caso de las fibras de vidrio-E atacadas por soluciones acidas en las que se observa que el ataque por H2O es despreciable, ya que el contenido de AI2 O3 disminuye el número de iones alcalinos en la superficie y da lugar a la formación de superficies ricas en AI2O3-SÍO2 que impiden la lixiviación de los iones alcalinos. Estos auto­res han observado también que la atacabiHdad de las fibras de vidrio-E es mayor en el caso de los ácidos minerales, ya que el contenido en SÍO2 de las mismas es bajo y no hay su­ficientes grupos SÍO2 para apantaliar la lixiviación de los componentes solubles a la acción del ácido. En la figura 14 se observa la dependencia con el pH de la solución de la cantidad de óxidos extraídos.

90

Page 11: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

o "O

o -o

1 2 3 4

Normalidad del acido

2 0

i 8

I 6

14

12

10

8

6

4

2

O

^ __ l

^ ^ ^ 1 1 ^

A1203

(B)

2 '3 4

•Normalidad del acido-

Fig. 14. Efecto de la concentración de CIH en la extracción de (A) CaOy(B) AI2O3.

3. TRANSFORMACIONES QUÍMICAS DE LA SUPERFI­CIE.

Constitución y composición de las superficies atacadas. Hasta el momento, hemos abordado el tema de la ataca-

bilidad del vidrio por soluciones acuosas, desde el punto de vista de la reacción en sí. El otro punto de vista desde el cual podríamos atacar este problema, es el del estudio de los efectos causados por este tipo de reacciones sobre el vi­drio original, y más en concreto, los distintos tipos de su­perficies que se van a obtener tras la reacción e incluso, par­tir como base de trabajo del conocimiento de las superficies sobre las que van a actuar las diferentes disoluciones de ata­que.

3.1. CLASIFICACIÓN DEL TIPO DE SUPERFICIES. De una forma general, las superficies obtenidas por ata­

que químico de vidrios de silicato con soluciones acuosas, se pueden encuadrar, según Hench (1) (4), en cinco tipos característicos que se muestran en la figura 15, y que descri­biremos a continuación someramente.

— Superficies de Tipo I: Este tipo de superficies posee una composición prácticamente igual a la de la masa del vi­drio, si bien presentan una Hgerísima capa de hidratación. Una superficie de tipo I se obtendría, por ejemplo, al atacar la sílice vitrea con soluciones de pH neutro (1) (4).

— Superficies de Tipo II: Caracterizadas por poseer una película protectora rica en SÍO2, debida a la lixiviación se­lectiva de iones alcalinos. Son superficies muy resistentes, especialmente al ataque por soluciones de pH < 9 (1) (4), y se obtienen por la desalcalinización de vidrios SÍO2.R2O y SiO2.R2O.CaO (R = Li, Na, K, . . .) con un bajo contenido en óxido alcalino.

— Superficies de Tipo III: Su característica principal es la posesión de un a película protectora doble, o sea, sobre la película rica en SÍO2 se crea otra película rica en otros óxi­dos. Este tipo de superficies se pueden obtener por desalca-Hnización, modificaciones estructurales o precipitación de la disolución. Son superficies que ofrecen gran resistencia al ataque por ácidos y por bases.

Superficies de tipo III pueden obtenerse por corrosión de vidrios que contienen AI2O3 en su composición (1) o mediante soluciones en las que estaba presente el Al "*". En el primer caso, la doble película protectora estaba produci­da por precipitación de complejos de alúmina-silicato sobre una capa rica en SÍO2 formada con anterioridad; en el se­gundo caso, era debida a la difusión de Al "*" en la superficie del vidrio y se formaba por encima de una capa rica en SÍO2 debida a la lixiviación de Na"*".

Otro ejemplo muy característico en el que también se obtienen superficies de tipo III, es la corrosión acuosa de un vidrio sodocálcico inverso que contiene P2O5 (1), en el que se observa la formación de una película de fosfato calci­co sobre una capa rica en SÍO2.

— Superficies de Tipo IV: Estas superficies poseen una película rica en SÍO2, si bien la concentración de SÍO2 en esta película no es suficiente para proteger al vidrio del ata­que rápido por desalcalinización o disolución de red (1) (4).

Son características de vidrios de SÍO2.R2O y SÍO2.R2O. CaO (R = Li, Na, . . . ) , con alto contenido en R2O, ataca­dos por soluciones acuosas acidas.

— Superficies de Tipo V: La composición de una super­ficie de tipo V es similar a la de la masa del vidrio ya que son debidas a disoluciones congruentes del vidrio con pérdi­das equivalentes de SÍO2 e iones alcalinos. Se diferencian de las superficies de tipo I en que los vidrios que muestran su-peficies de tipo V están perdiendo continuamente cantida­des importantes de iones en la solución (1).

De lo dicho hasta aquí, es fácil deducir que el tipo de superficie de un vidrio, dependerá de su composición inicial y del tipo de ataque químico a que se vea sometido. Por lo tanto, podemos ser capaces de obtener vidrios en los que su resistencia a la atacabilidad química esté mejorada, sin más, que son^etiéndolos a tratamientos que originen en eUos su­perficies resistentes ricas en formadores de red. Anderson y col. (18) afirman que se puede mejorar en un" orden o dos de magnitud la resistencia química de vidrios sodocálcidos mediante la desalcalinización de la superficie con un gas ácido. Son estos mismos autores quieneshan realizado un interesante trabajo comparando los efectos causados por el

B0L.S0C.ESP.CERAM.VIDR.V0L.21 - NUM.2 91

Page 12: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

Tipo I Interfase vidrio original-Solución

\ - Masa—^

O -g •^ o ' CO

1 3 1 en I

Vidrio inerte

3-en LJ

3 O

CO

/

^

Tipo lE

Lixiviación selectiva

[— Masa

Película protectora

Distancia Distancia

CM

O (75

1 o

(55

1

Tipo M

Alg O3 - SÍO2 o CaO- Pg O5

Si O« — MOSQ ^

Doble pelicula protectora

•o

CO

Tipo I Z

o.i

S I S S

g I

1^

(^

|—Masa——

Pelicula no protectora

— Distanda Distancia

o CO -o

o o

CO

Tipo 3L

I J o 3 O

|2

Masa-

Vídrio soluble

Distancia ^

Fig. 15. Tipos de superficies características, obtenidas por ataque de vidrios con soluciones acuosas.

92

Page 13: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

tratamiento de botellas con SO2 y con una mezcla de F2CH -CH3 + aire y botellas no tratadas sometidas al ataque con H2O y CO3HK al 1 % en autocalve a 121^C.

Del análisis de las soluciones de lixiviación obtuvieron que las botellas tratadas con SO2 son más resistentes que las tra­tadas con F2CH-CH3 + aire y ambas más resistentes que las no tratadas, lo cual indica que no necesariamente los resul­tados obtenidos estén correlacionados específicamente con el tratamiento, sino con las características específicas de las botellas.

Anderson y col. (18) concluyen que es posible que el aumento de la resistencia química en estos vidrios tratados con F2CH-CH3 y aire se deba a la sustitución de iones OH' y 0^ ~ de la superficie por iones F", que darían lugar a com­puestos volátiles tales como FNa y F2Ca y que la acción del SO2 provocaría la formación de S02Na2, eliminado por el lavado de las botellas. Por lo tanto, el tratamiento con F2CH-CH3 y aire, y con SO2 da lugar a superficies de tipo II con una capa muy rica en SÍO2 resistentes al ataque por soluciones acuosas acidas.

Otra técnica interesante es la llevada a cabo por Dirkes y col. (19), en la cual se trata una superficie de vidrio sodocál-cico con una mezcla de SO2 y O2 a temperatura relativa­mente alta, ajustándose a la reacción:

Si-O-Na"" +"^a-0-Si + SO2 + 1/2 O2 "^

->Si-0-Si+Na2S04(ptdo)

Como vemos, el tratamiento con SO2 da lugar a S04Na2 que se elimina por lavado con H2O y por otro lado la alta temperatura favorece la movilidad delO^'y el Na*", que emi­gran del vidrio, provocando una polimerización de los Si-OH terminales y dando lugar a la formación de una red tridimensional en la superficie, con estructura muy parecida a la de la sílice fundida, lo cual hace que estos vidrios sean muy resistentes térmicamente y tengan una elevada resisten­cia química a los ácidos.

Dirkes y col. (19) afirman igualmente que a bajas tempe­raturas la movilidad del 0 ^ ' se reduce y la lixiviación de al­calinos se rige por un intercambio iónico con los H*" del va­por de H2O, dando lugar a una superficie parecida a la obte­nida por la lixiviación de estos vidrios con soluciones acuo­sas acidas y que es rica en grupos Si-OH, como se ven en la reacción siguiente:

Si-0-NA^ +"^a-0-Si + SO2 +1/2 O2 +H2O ->Si-OH HO] ->Si-OH HO-Si + Na2Si04 (ptdo).

si bien una fracción de estos grupos SiOH puede polimeri-zarse por tratamiento térmico, desprendiéndose H2O.

3.2. CONSTITUCIÓN Y COMPOSICIÓN DE LAS CAPAS SUPERFICIALES.

La lixiviación de vidrios sodocálcicos por soluciones acuosas acidas da lugar a la formación de superficies de tipo II con una película rica en SÍO2 debida a la lixiviación de los iones alcalinos. Scholze y col. (5) han estudiado la com­posición de esta capa lixiviada con una solución utilizando la espectroscopia infrarroja.

Coniparando el espectro de láminas no tratadas con el de láminas lixiviadas, figura 16, se observa: a) la aparición de una banda a ISßva ('^(3450 cm"- ) que corresponde a la tensión del 0-H y que Scholze y col. (5) y Ernsberger (20) asignan a la tensión del 0-H en el Si-OH; b) la aparición de otra banda muy nítida a 6.2Mm ('^ 1600 cm~ ) que tanto

Scholze et al. como Ernsberger afirman qué se debe al modo de flexión del H2O, y que por lo tanto implica la existencia de H2O molecular en la capa lixiviada.

10000

-N° de ondas(cm"' ) • 3000 1500

3 5 7 Longitud de onda (/Am) » -

Fig. 16. Espectros IR de una lámina de vidrio 20^/o Na20.6°/o CaO. 74 /oSiOo ( /o en moles) antes y después de ser lixivia­da (178 h a 60^C en CIH 0.1 N), con espectro diferencial cal­culado (curva de trazos).

Por otro lado^ Scholze y col. (5) observaron que la canti­dad de Ná*" lixiviada y las extinciones de las bandas a 2.9 y 6.2Mni tenían una relación directa con la raíz cuadrada del tiempo de lixiviación (figuras 2a y 17) lo que lleva a pensar en la existencia de una relación constante e independiente del tiempo entre el Ná*" y el H2O que se difunden en la red, de forma que existe una gran posibilidad de que el proceso de lixiviación de los iones alcalinos esté regido por un inter­cambio iónico entre el Na*" del vidrio y el H3O*" de la disolu­ción, postura apoyada por otros investigadores.

0,8

0,6

0,4

0^

0

l/H 0,8

0,6

0,4

0^

0

k^^ 0,8

0,6

0,4

0^

0

y

0,8

0,6

0,4

0^

0

i / ^ . ' - ' K

0,8

0,6

0,4

0^

0 ^ ^ " >

500 1000

^ en s'/2

1500 2000

Fig. 17. Variación de la extinción de las bandas IR a 2.9 y 6.2 jLim con t 1/^ para vidrios 20"/o Na20.6"/oCa0.74"/oSi02 ("/o en moles) atacados con CIH 0.1 N a 60°C.

Tanto Ernsberger como Scholze y col. consideran como segura la existencia en el vidrio atacado de agua en forma molecular y de grupos OH unidos al formador. Sholze y col. han llegado, mediante un complejo cálculo de los coeficien­tes de extinción, a evaluar el contenido en agua molecular de la capa lixiviada, estudiando la variación del peso de las láminas lixiviadas en función de t ^\^y mediante la ecua­ción, p

^HoO 1 V ( T : + 4 4 ) [3] Cjf 36 ^Ná"

donde Q^¿ — cantidad de iones Ná lixiviados (mol Na20/ cm^).

BOL.SOC.ESP.CERAM.VIDR.VOL.21 - NUM.2 93

Page 14: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

Cf^ = cantidad de iones rf" difundidos a la red (mol/cm^), Cfj = cantidad de moléculas de H2O difundidas a la red (moV cm^), V = variación del peso de la lámina en la lixiviación.

Scholze et al. concluyen que C^^Q/Cif =0.46 ± 0.02, lo que quiere decir que a cada ff "^difundido a la red le acompañan 0.46 moléculas de H2O y que al aumentar el contenido de CaO en la composición del vidrio, mayor es el número de moléculas de H2O que se difunden, ya que la in­troducción de CaO implica un aumento del volumen de los huecos en la estructura. Igualmente han deducido que cuan­to mayor es el contenido en óxido alcalino en el vidrio me­nor es el grado de condensación de los grupos SiOH.

Siguiendo con el problema de composición de la capa li­xiviada, Scholze y col. (5) han demostrado que el contenido de Na20 va aumentando a medida que avanzamos desde la superficie hacia el interior del vidrio, siguiendo una tenden­cia en S, como puede verse en la figura 18, hasta llegar a una pro fundida en la que el contenido en Na20 es igual al del vidrio original. Este hecho ha sido confirmado por Boksay y col. (21) y Doremus (22).

0 ^ 7 V U • y

/ /

¡J TIEMPO DE LIXIVIACIONfe'^

^ A ^ 7^

o400 A 600 v800

^ Q 5

^ 0 1 2 3 4 5

Distancia a la superficie ( ; a m ) — ^ -

Fig. 18. Perfiles de composición de Na20 en función de la profun­didad para láminas de vidrio 20^/oNa2O.6%CaO.74 /0SÍO2 (^/o en moles) atacadas con CIH 0.1 N a 60 C.

En este punto el contenido en agua es nulo, puesto que, como ya indicamos dada la relación Na'''/H20 que se man-tine en la capa lixiviada, la tendencia del perfil de concen­tración es similar pero inversa a la del Na20.

Como conclusión, podemos afirmar que la Hxiviación de los vidrios sodocálcicos da lugar a una capa de composición casi constante con una pequeña concentración de Na20 y muy rica en SÍO2, en la que existe también H2O en forma molecular, que puede llegar a ser prácticamente toda la existente en la capa.

4. MECANISMOS Y CINÉTICA

Son dos, en principio, los modos de reacción claramente diferenciados, desde el punto de vista cinético y del de los mecanismos de reacción del vidrio con las soluciones acuo­sas: el de desalcalinización (regido por un mecanismo de di­fusión iónica) y el de disolución del componente formador de red).

Sin embargo, desde el punto de vista del transcurso de la reacción, reaHzada en condiciones dinámicas (soluciones no tamponadas), podemos considerar que una reacción en la que al principio comience dominando el primer mecanismo acaba a tiempos suficientemente largos dominando el segun­do mecanismo, esto es: tras la extracción de los iones alcali­nos y por aumento del pH (sea local o generalizado), co­

menzará un mecanismo de disolución del retículo, regido por nuevos parámetros. En este transcurso podemos supo­ner la coexistencia de ambos mecanismos, llegando un mo­mento determinado en que ninguno de los dos es dominan­te y que Boksay y col. (21) denominan estado estacionario.

Como confirmación de este aserto podemos acudir a los reultados ya clásicos de Rana y Douglas (9) y sobre todo a los de Boksay y col. (21), que han llevado a cabo el estudio de la Hxiviación de vidrios ternarios del sistema SÍO2.MO. R2O (donde MO = SrO ó BaO y R2O = Na20 ó K2O) en H2O a 40 C (condiciones dinámicas), observando que la razón ion alcalinotérreo/átomo de Si, permanece constante a lo largo de toda la capa obtenida por lixiviación y que por lo tanto los iones alcalinotérreros en estos vidrios no parti­cipan en el proceso de intercambio iónico y serán extraídos del vidrio junto con los componentes de la red.

La distribución de los iones Ná a lo largo de la capa lixi­viada no permanece constante, sino que sigue una tendencia en S como se mostró anteriormente en la figura 18 y por lo tanto las capas se pueden dividir en dos secciones diferentes en función de la concentración de Na"*".

Estos resultados prueban que al principio el intercambio iónico es el mecanismo dominante, pero que a medida que la concentración de Na"*" en la capa Hxiviada va disminuyen­do, el intercambio iónico se hace más lento, pues se necesi­ta más tiempo para que se difundan los iones Ná más aleja­dos de la superficie y el pH de la solución va aumentando,

(a)

l'6

._ 1-4 "en ^ 1-2

o 06

^ 0€|

0-4

wtffl sps^^ I I I I I !

— — — 1 1 r-^n-^-k

O 2 4 6 8 10 12 Tiempo (dias)

(b)

14

Posición de lo superficie en el tiempo,t=0

Posición de lo superficie en el tiempo, t

Fig. 19. (a) Relación entre los sistemas de coordenadas usados en la teoría. (b) Razón K /Si disueltos durante un día en función del tiem­po para un vidrio 20°/o KjO. 12°/o SrO. 68^/0 SÍO2 (^/o en moles).

94

Page 15: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

llegando un momento en que la velocidad del intercambio iónico y la de disolución de la red del vidrio se igualan, es­tableciéndose, como se ve en la figura 19b, lo que denomi­nábamos anteriormente como estado estacionario.

Para Boksay y col. (21) (24), la composición de la capa lixiviada es una función del tiempo. Con el fin de estudiar este fenómeno, suponen el ataque de un vidrio por solucio­nes acuosas como un sistema de coordenadas móvil, figura 19a, donde "x" es la distancia desde la superficie original del vidrio hasta un punto cualquiera en el interior del mis­mo, considerando el coeficiente de difusión independiente de "x".

Si la velocidad a la que se disuelve la red es "a", constan­te con el tiempo, podemos definir una nueva coordenada móvil "y", que representa la distancia desde la superficie real a un punto en el interior del vidrio, de forma que:

X = y + a t [ 4 ]

n=Hexp ( ß

a 1 I J -ex

exp(-p2)dp

Aplicando la segunda ley de Fick a este proceso de difusión,

[ 5 ] 9 n 9 o t X o X

9 n D ( ^ - - )

ox t

siendo n la fracción molar de ion alcalino en la capa lixivia­da. Si desarrollamos [ 5 ] y diferenciamos en [4] Uegamos a obtener.

9 n ( - ^ - ) = D (

o t y

32 n

o y-^ t

9 n [ 6 ]

que se puede considerar como una forma de la 2^ ley de Fick aplicada al sistema de coordenadas móviles, y cuya so­lución es:

-a exp (- p^)dp + 1 - exp ( — y) [7 ]

siendo S y - at

/4Dt

- y + a t

/4Dt

De forma que :

* Cuando t->oo n = l exp

a ( • - y )

lo cual indica (24) que una vez alcanzado el estado estacio­nario la concentración de iones alcalinos en la capa es n.

* Cuando y -^ o , n = 1 lo que significa que a grandes dis­tancias de la superficie la concentración de iones alcali­nos coincide con la del vidrio original.

* Cuando y = O, n = O indicando que el intercambio ióni­co en la superficie procede de forma instantánea.

* Cuando t = O siendo y f= O, n = 1.

* Cuando D = O, n = 1

* Si a = O obtendremos que:

exp (- p^ ) dp

Estos resultados obtenidos por Boksay y col. se ajustan bien a vidrios de silicato potásico pero no a vidrios de silica­to sódico, pues según estos autores en estos últimos vidrios ocurren transformaciones estructurales y el coeficiente de Difusión no es independiente de la concentración.

Sin embargo, Doremus (22) añade que la interdifusión de dos cationes A y ^ puede ser expresada por un coeficien­te de interdifusión D de forma que,

D = D A D B / [ C D A + ( 1 - C ) D B ] [ 8 ]

siendo "c" la concentración de iones A. La ecuación [ 8 ] con D^ y Dß independiente de "c" es

consistente con la interdifusión de ioijjes Ná y K"*" en vidrios sodocálcicos. Así pues, sustituyendo D en la ec. [ 5 ] por D con 9 c / 3 y = 0 yd£ . -> O cuando y ^oo nos queda

dy

que.

de [ D A / ( l + b c ) ] — = a ( l - c ) [ 9 ]

dy

donde b — (D^/Dß) -1 y "c" la concentración del ion alca­lino inicial.

La solución de la ec. [ 9 ] para c=Ö cuando y = O, será:

c = [1 +exp ( - ay/Dß)] / [1 + b exp (- ay/Dß)] [10]

Los perfiles de composición obtenidos en función del pa­rámetro ay/Dß se muestran en la figura 20, en la que se puede observar que estos perfiles de composición calculados se aproximan mucho mejor a la realidad que los obtenidos por la ec. [ 7 ].

Las dificultades al comparar perfiles de composición cal­culados y reales se debe a diferentes factores (22), como son: a) la diferencia de movilidad entre los iones alcalinos y el H*", que provoca que el perfil de composición calculado sea mucho más agudo; b) la formación de capas hidratadas de gel de sílice en la que los iones son muy móviles, y c) el H2O que puede penetrar en la interfase gel-vidrio, con lo que la velocidad de la interfase, "a", usada en las deduccio­nes anteriores debería ser la velocidad a la que se mueve la interfase vidrio-gel que es un poco más rápida que la inter­fase vidrio-solución, si bien, es difícil apHcar este nueva ve­locidad de interfase a la ec. [10], ya que la interfase vidrio-gel puede llegar a ser muy difusa.

BOL.SOCESP.CERAM.VIDR.VOL.21 - NUM.2 95

Page 16: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

I.U —^—1

b = 10,/ ' ' f>r y 'loo /looo y ^ í, r X

/ ^ IV-r

ü.o / J y / /

c - oc

/ A / / o V c ü C H A

/ / / /

f

r^o / u.¿ r

0

(a)

10 12 14 0 2 4 6 8 ay/D

Fig. 20. Perfiles de concentración calculados a partir de la ec. (10) paia diferentes valores del parámetro b.

La mayor ventaja de la aproximación de Doremus estri­ba en el hecho de considerar que la concentración de ion alcalino en la capa es función, entre otros factores, del D j ^ (coefíciente de difusión del hidrógeno), puesto que es evi­dente por los trabajo de Scholze (5) (25) y S. Wood y col. (26) que el paso determinante de la lixiviación del vidrio es la movilidad de los protones y no la moviHdad de los iones alcalinos.

Este hecho puede confirmarse observando la figura 21a en la que se observa la cantidad de SÍO2 disuelta en un vi­drio sodocálcico comercial por el ataque de soluciones de CIH +H2O y CID +D2O a pH diferentes y la figura 21 que muestra la dependencia de la sílice disuelta con el tiempo de lixiviación y el pH respectivamente, concluyéndose en que la velocidad de la disolución de la red del vidrio en es­tas condiciones (pH bajos) está determinada por la movili­dad del H , como parece demostrarse por los ataques de CID o CIH, llevados a cabo por Scholze (25). Este hecho no justifica los mínimos de extracción obtenidos, observados por Scholze (25) y Boksay y col. (27), que requiere un tra­tamiento experimental más delicado, y la inclusión en el modelo de un segundo proceso de disolución, el propio de la capa de sílice amorfa formada.

BIBLIOGRAFÍA

(1) L.L. HENCH: Physical Chemistry of Glass Surfaces. J. Non-Cryst. SoHds, 25 (1977), 343-369.

(2) X^"' RYND y A.K. RASTOGL Characterization of Gla'ss Surfaces by Electron Espectroscopy. Surf. Sei., 48 (1975), 22-43.

(3) L.L. HENCH: Characterization of glass corrosion and durability. J. Non^ryst. Solids, 19 (1975), 27-39.

(4) L.L. HENCH y D.E. CLARK: Physical Chemistry of glass surfaces. J. Non-Cryst. Solids, 28 (1978), 83-105.

(5) H. SCHOLZE, D. HELMREICH y L BOKARDJIEV: Untersuchungen Über das Verhalten von Kalk-Natron­gläsern in Verdünnten Säuren. Glastech. Ber., 48 (1975), 237-247.

(6) T.M. EL-SHAMY, J. LEWINS y R.W. DOUGLAS: The dependence on the pH of the descomposition of glasses by aqueous solutions. Glass Technol., 13 (1972), 81-87

(7) T.M. EL-SHAMY y R.W. DOUGLAS: Kinetics of the reaction of water with glass. Glass Technol., 13 (1972), 77-80.

12

CM

^ TD

CM

§ 3

Jl

HCl

DCl

2 3

pH

(b)

20

Tiempo (horas)

(c)

- 7

8"

- 9

_

<

\

• •

6

pH

10

Fig. 2L (a) Variación de la sílice disuelta en función del pH de la solución para un vidrio sodocálcico comercial tratado con ClHóClD(16h, lOO^C). (b) Variación de la sílice disuelta en función del tiempo de li­xiviación para un vidrio Me Innes-Dole a 75^C (pH =11.23, opH=3.65). (c) Variación de la velocidad de disolución de un vidrio Me Innes-Dole en función del pH de la solución atacante.

96

Page 17: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

(8) A. PAUL: Chemical durability of glasses; a thermody­namic approach. J. Mater Sei., 12 (1977), 2246-2268.

(9) M.A. RANA y R.W. DOUGLAS: The reaction bet­ween glass and water. Part 1. Experimental methods and observations. Phys. Chem. Glasses, 2 (1961), 179-195.

(10) B.E.RAMACHANDRAN, B.C. PAI y N. BALASUR-BRAMANIAN: Studies on the acid resistance of E-glass. J. Amer. Ceram. Soc, 63 (1980), 1 - 3.

(11) M.F. DILMORE, D.E. CLARK y L.L. HENCH: Che­mical durability of Na20-K20-CaO-Si02 glasses .J .Amer. Ceram.Soc, 61 (1978), 439443.

(12) T.M. EL-SHAMY, S.E. MORSI, H.D. TAKI-ELDIN y A.A. AHMED: Chemical durability of Na20-CaO-Si02 glasses in acid solutions. J.Non-Cryst. Solids, 19 (1975), 241-250.

(13) W.A. WEYL y E.C. MARBOE: Constitution of Glas­ses: A Dynamic Interpretation, Vol. II, Part 1. Wüey-In-terscience, New York, 19 64.

(14) B. LENGYEL y Z. BOKSAY: Electrical Conductivity of Glasses: II. Z. Phys. Chem. (Leipzig), 204 (1955), 157-64.

(15) M.A. RANA y R.W. DOUGLAS: The reaction bet­ween glass and water. Part 2. Discussion of the results. Phys. Chem. Glasses, 2 (1961), 196-205.

(16) CR. DAS y R.W. DOUGLAS: Studies on the reaction between water and glass. Part 3. Phys. Chem. Glasses, 8 (1967), 178-184.

(17) A. YOUSSEFI y A. PAUL: Résistence chimique de quelques verres du système Na20-CaO-Si02. Verres Re­fract., 32 (1978), 663-668.

(18) P.R. ANDERSON, F.R. BACON y B.W. BYRUM: Effect of surface treatments on the chemical durability

and surface composition of soda-lime glass bottles. J. Non-Cryst. Solids, 19 (1975), 251-262.

(19) W.E. DIRKES Jr., W.A. RUBEY y CG. PANTANO: The formation of a silica-rich surface using Sulfur Dioxi­de in drawn glass capillaries. J. High Resal. Chrom. & Chrom. Comm., 3 (1980), 303-305.

(20) F.M. ERNSBERGER: Molecular water in glass. J. Amer. Ceram. Soc, 60 (1977), 91-92.

(21) Z. BOKSAY, G. BOUQUET y S. DOBOS: Diffusion processes in the surface layer of glass. Phys.Chem.Glasses, 8(1967), 140-144.

(22) R.H. DOREMUS: Interdiffusion of hydrogen and al-kaH ions in a glass surface. J. Non-Cryst. Solids, 19 (1975), 137-144.

(23) T.M. EL-SHAMY y H.D. TAKI-ELDIN: The chemical durability of PbO-Si02 glasses. Glass TechnoL, 15 (1974), 48-52.

(24) Z. BOKSAY, G. BOUQUET y S. DOBOS: The kine­tics of the formation of leached layers on glass surfaces. Phys. Chem. Glasses, 9 (1968), 69-71.

(25) H. SCHOLZE: Evidence of Control of dissolution ra­tes of glasses by H"*" mobility. J. Amer. Ceram. Soc, 60 (1977), 186.

(26) S. WOOD y J.R. BLACHERE: Corrosion of lead glas­ses in acid media: II, Concentration profile mesurements J. Amer. Ceram. Soc, 61 (1978), 292-294.

(27) Z. BOKSAY y G. BOUQUET: The pH dependence and an electrochemical interpretation of the dissolution rate of a siHcate network. Phys. Chem. Glasses, 21 (1980), 110-113.

B0L.S0C.ESP.CERAM.VIDR.V0L.21 - NUM.2 97

Page 18: REACCIONES DE LA SUPERFICIE DEVIDRIL O CON SOLUCIONESboletines.secv.es/upload/198221081.pdf · RESUME On présentdane s ce travail une revision exhaustive des réactions de la superfice

^^.¡[•¡.ry, ^VÍ;'';.5^^;,Í;" w í ? g | f ^ :

^a%^ 9^iíi

f ^ l P f ^ ^ ^ f ^ ^ ! ^ f H " ; '¡P ;iJ?-::^§:%

^;V*^r '

O w t o ^ »*»»

Forma de Pago: Talón nominativo o giro postal

REFRACTARIOS PARA INCINERADORES INDUSTRIALES Y

TRATAMIENTO DE RESIDUOS URBANOS. UN VOLUMEN EN EL QUE SE RECOGEN EN CASTELLANO TODOS LOS TRABAJOS Y CONFERENCIAS PRESENTADOS EN EL XXI COLOQUIO INTERNACIONAL SOBRE REFRACTARIOS, CELEBRADO EN AACHEN, EN OCTUBRE DE 1978.

Desarrollo del revestimiento refractario en Escandinavia. P. HAVRANEK, L. IVARSON, HOGANÄS (S) Mantenimiento de las plantas de calcinación de aguas residuales industriales. H. LANDOLT, MONTHEY (Suiza). Problemas en la combustión de residuos de la industria química. H. W. FABIAN, M. SCHÖN, K. CAPEK, LEVERKUSEN. Empleo de ladrillos refractarios en plantas de incineración de residuos industriales y domésticos. H. LEUPOLD, WIESBADEN -H. STEIN, GRÜNSTADT. Técnica de aplicación de masas refractarias en plantas de incineración de basuras y residuos industriales; revestimiento de cámaras de fuego refrigeradas con aprovechamiento del calor. G. GELSDORF, WIESBADEN - M. SCHWALB, H. STEIN, GRÜNSTADT. Materiales refractarios para plantas de incineración de basuras en Holanda. M. W. ARTS, L. L. VAN BREUKELEN y J. T. VAN KONIJNENBURG, GELDERMALSEN. Carburo de silicio en el revestimiento refractario de las plantas de incineración de basuras. E. H. P. WECHT, DUSSELDORF. Relación entre la estructura cerámico-mineralógica de los revestimientos refractarios y su desgaste en plantas de incineración de residuos durante la combustión de basuras domésticas.

H. SCHWEINSBERG, DUISBURG - M. CLAVERIS, KREFELD -K. H. THÖMEN, DÜSSELDORF. Criterios de elección de materiales refractarios utilizados para plantas de incineración de basuras o para plantas de aprovechamiento de residuos. K. BURGSMULLER, W. KLEIN, J. KNOF, K. WOLTER, GROSSALMERODE - G. SLANGE, R. WIEST, SIEGBURG. Factores que influyen en la duración del revestimiento refractario de las plantas de incineración de residuos químicos. R. KREBS, HANGELAR - W. KRÖNERT, AACHEN. Revestimientos refractarios monoliticos en plantas de incineración de basuras urbanas de bajo rendimiento. JAN VAN LIT, PARIS. Experiencias obtenidas con materiales refractarios durante la combustión de residuos salinos. H. A. HERBERTZ, E. RUHL, FRANKFURT, am Main. Abrasión de refractarios a altas temperaturas. J. T. MALKIN y G. C. PADGETT, STOKE -on- TRENT (GB). Estudio de ladrillos de carburo de silicio para incineradores. S. YOSHINO, BIZEN-CITY (Japón). Técnica de protección de tubos de caldera, puesta en obra en la planta de incineración T.I.R.U. de IVRY/PARIS. A. MOREAU, IVRY (Francia) - A. FAUTIER, MONTROUGE (Francia).

Pedidos a: SOCIEDAD ESPAÑOLA DE CERÁMICA Y VIDRIO