Vibraciones y Modulo de Torsioningles

13
VIBRACIONES DE TORSIÓN Y MÓDULO DE TORSIÓN Memoria de laboratorio por Andrés Alvarez Pérez 2 DE DICIEMBRE DE 2014 TECNICAS EXPERIMENTALES EN FISICA II Grado en Física. Facultad de Ciencias. Universidad de Valladolid.

description

vibracion

Transcript of Vibraciones y Modulo de Torsioningles

Page 1: Vibraciones y Modulo de Torsioningles

VIBRACIONES DE TORSIÓN Y MÓDULO DE TORSIÓN

Memoria de laboratorio por Andrés Alvarez Pérez

2 DE DICIEMBRE DE 2014 TECNICAS EXPERIMENTALES EN FISICA II

Grado en Física. Facultad de Ciencias. Universidad de Valladolid.

Page 2: Vibraciones y Modulo de Torsioningles

1

INDICE:

1. Introducción…………………………………………………..2

2. Fundamento teórico………………………………………3

3. Descripcción del dispositivo experimental……..5

4. Presentación de los resultados……………………...9

5. Discusión de los resultados……………………………11

6. Conclusiones…………………………………………………12

7. Bibliografía……………………………………………………12

Page 3: Vibraciones y Modulo de Torsioningles

2

1) INTRODUCCIÓN:

In order to study and characterize the elastic properties of some wires of dissimilar metals

subject to a torque, an experiment has been done using a torsion pendulum.

The pendulum has a straight circular section wire hanging uprightly, with its upper end

fixed and the lower end hanging an object of known, or easy to calculate, moment of

inertia. In this case the object is a horizontal rectangular stick make ready to place two

cylinders in different positions.

The goal of this experiment is to determine the torsion module of various rods of different

metals using two different methods, the elastic one and the dynamic one.

The torsion module is a geometric property of the cross section of a mechanical cylinder

that relates the magnitude of the torsion torque with the shear stresses over the cross

section.

Also it seeks to find the moment of inertia of the system using the latter method, ie

measuring the rotational inertia of the rods.

And finally, will be discussed the dependence of the oscillations with the length and

diameter of the sticks, where one can check as the larger the diameter and smaller the

length of wire, smaller will be its oscillation period.

For this, the factors that determine the oscillation period of the pendulum must be taken

into account to see if there is a linear dependence between the period and the factors that

our experiment determines. It’s a necessary condition to obtain the constant that

characterizes our material and the other magnitudes.

Page 4: Vibraciones y Modulo de Torsioningles

3

2) FUNDAMENTO TEÓRICO:

Para estudiar las propiedades elásticas de un alambre que se somete a un par de fuerzas

tensoras, debemos tener en cuenta algunos conceptos teóricos relativos a la oscilación

(que implica deformación del sólido), como la Ley de Hooke, el movimiento armónico

simple (M.A.S.) y la elasticidad por deslizamiento (cizalla y torsión).

Según la ley experimental de Hooke (I), la deformación de un cuerpo es proporcional a la

fuerza aplicada sobre él. Si se trata de un sólido elástico, aparecerá una fuerza

recuperadora que hará que vuelva a su estado inicial, mientras que, en un material

plástico, éste no recuperará dicha posición y las distancias originales entre las moléculas

habrán cambiado. Esta ley se puede expresar de la siguiente manera:

F = −kx [N] [1].

El signo negativo se debe a que la fuerza F deformadora tiene sentido contrario a la

deformación (x). ‘k’ representa el coeficiente elástico que determina la proporcionalidad

entre la fuerza y la deformación.

Expresado de otra forma:

x= −F/k , siendo 1/k la constante elástica. [2]

Hay que señalar que la ley de Hooke es sólo válida para pequeñas deformaciones dentro

del límite elástico del material.

Cuando un sistema pierde su posición de equilibrio estable, se producen oscilaciones. En

los casos ideales, la oscilación será un movimiento armónico simple (no se toma en cuenta

la amortiguación, como en los casos reales). El movimiento de un punto del sistema en

dicha oscilación, partiendo desde la posición de equilibrio, es una función sinusoidal

periódica:

y (t) = A sin (ωt + δ ) [3], donde y es la posición (unidades de longitud) respecto del

equilibrio, A la amplitud (constante) de dicha oscilación (distancia máxima respecto del

punto de equilibrio), ω la velocidad angular, t el tiempo desde el inicio de la oscilación y d

la posición inicial (Si d es 0, en t=0 estaremos en la punto de equilibrio y=0). La velocidad

del punto estudiado según el tiempo será la derivada con respecto al tiempo de la función

anterior.

v(t) = dy/dt = A ω cos( ωt +δ ) [4]

Page 5: Vibraciones y Modulo de Torsioningles

4

La aceleración del cuerpo será la segunda derivada de y (t) respecto a t.

a(t)= d^2 y/ d t^2 =− A ω^2 sen(ωt + δ) [5]

Por otra parte, se cumple la ley de Hooke para las oscilaciones, en la que F=-kx, donde x es

ahora la posición y (equivale a la deformación del cuerpo). Por tanto:

F = −k A sin (ωt +δ ) [6]

Si ahora recordamos la 2ª Ley de Newton, fuerza es igual a la masa por la aceleración. Por

tanto, en la oscilación armónica simple:

F = ma = −k A sin (ωt +δ ) [7], donde m es la masa del cuerpo que oscila y a su aceleración,

que viene dada por la fórmula [5]. Se obtiene entonces:

F = −m A ω^2 sin (ωt +δ ) = −k A sin (ωt +δ ) [8]

Simplificando nos queda:

k = m(ω^2) [9]

Como ω=2π/T [10], entonces:

T^2 = 4(π^2)m/k [11] , expresión general para el período de oscilación en un ‘M.A.S.’.

La deformación por torsión se puede contemplar como un caso concreto de deformación

por cizalla (deslizamiento). En el caso de un alambre, se puede considerar como un cilindro

(ideal) de radio R y longitud L. Si suponemos fija uno de las dos bases y aplicamos un par

de fuerzas tangentes a la superficie lateral, es decir, normal al eje del cilindro, se cumplirá

la ley de Hooke, siempre que la deformación sea pequeña. La ley de Hooke para la torsión

se puede expresar:

β=(1/D)M [12], donde M es el momento del par de fuerzas aplicado, β la deformación

(adimensional, pues viene dada por el ángulo) y D la constante recuperadora o de torsión,

(unidad: [Nm]). R dependerá en cada caso de la geometría del alambre, con lo que no

obtenemos un resultado que caracterice un material en concreto.

Podemos suponer que en la torsión existe una rotación en torno al eje central fijo del

alambre. Según la relación fundamental de la dinámica de rotación (2ª Ley de Newton para

la rotación), el momento de las fuerzas exteriores respecto a dicho eje es el momento de

Page 6: Vibraciones y Modulo de Torsioningles

5

inercia por la aceleración angular. En nuestro caso, la aceleración angular será la segunda

derivada del ángulo de deformación con respecto al tiempo.

M = I α =d^2(β)/dt^2 [13]. Esto equivale a M = Dβ [12], con lo que:

Dβ= I (d^2(β)/dt^2) [14]. Al tratarse de un movimiento armónico simple, y al haber

tomado en lugar de la deformación, el ángulo de deformación, esta ecuación tiene la

misma estructura que [8]:

F = -ky = m d^2(y)/dt. Siguiendo el mismo razonamiento, por analogía de [11]

obtendremos que:

T^2 = 4(π^2) I/D [15]

Por tanto, podemos hallar D si medimos el período de oscilación para un momento de

inercia determinado. Para poder cuantificar el momento de inercia al que queremos

someter el péndulo para obtener R, colocamos una barra maciza perpendicular al eje, con

lo que el momento de inercia lo podremos calcular a partir de la fórmula teórica para

sólidos de geometría sencilla.

3) DESCRIPCIÓN DEL DISPOSITIVO EXPERIMENTAL:

El motivo principal de la realizacion de este tipo de experiencias es la obtención del valor

numérico del módulo de torsión para varios materiales. En este caso se nos ofrecen dos

maneras de plantear y calcular esta magnitud.

La primera de ellas es la obtención por el “método estático”, que, resumidamente,

consiste en girar la varilla soporte un cierto ángulo, medir con un dinamómetro la fuerza F

que hay que aplicar a una distancia r del eje para que la varilla soporte se mantenga en

equilibrio para dicho desplazamiento angular. Se ha de tener cuidado de que el eje del

Page 7: Vibraciones y Modulo de Torsioningles

6

dinamómetro forme 90º con la varilla. Se desvía la varilla un ángulo mayor, se mide la

fuerza F, situando el dinamómetro a la misma distancia r del eje, y así sucesivamente.

La otra de las maneras es la utilización del “método dinámico”, el cuál es bastante más

complejo y se describe con más detalle a continuación.

Dadas estas condiciones, diseñamos un montaje experimental mediante el cual nos sea

posible tomar varias medidas para determinar con seguridad la constante de torsión.

En el péndulo teórico, podríamos medir el período de oscilación para un momento de

inercia determinado, obteniendo un solo valor (o calculando la media si se toman varias

medidas). Para ajustar mejor este valor, podemos ir variando el momento de inercia y

midiendo su período correspondiente. Para que el sistema oscile deberemos desviar un

ángulo α respecto de la posición de equilibrio.

Como la ley de Hooke se cumple sólo para deformaciones pequeñas (véase Figura 1), este

ángulo deberá ser paraxial, y siempre el mismo (aproximadamente) en caso de que se

tomen varias medidas.

A continuación se puede hallar R a partir de la proporcionalidad entre T^2 e I^2. Para

poder variar el momento de inercia de forma constante y cuantificada, diseñamos un

sistema formado por una varilla con dos masas móviles idénticas dispuestas

simétricamente respecto del eje central y perpendicularmente a él. Dicho eje está

constituido por la varilla que se desee estudiar.

Los alambres están sujetos a un soporte superior e inferiormente y deben ser tensados.

Estos alambres serán cilindros ideales iguales al descrito anteriormente, suponiendo que

una de sus bases está fija y que está sometido a un momento de torsión.

La expresión del momento de inercia de las masas móviles vendrá dada por el teorema de

Steiner, según el cual el momento de inercia de un cuerpo es el m. de in. respecto al eje

que pasa por su centro de masas más la masa por la distancia a dicho eje al cuadrado:

I = I(cm) + m(d^2) [16]. En nuestro experimento, la distancia d será la distancia desde el

eje del alambre (que coincide con la mitad de la varilla) hasta el eje que pasa por el centro

de masas de la masa móvil. Como hay dos masas móviles y están dispuestas

simétricamente, el momento de inercia será el doble: I = 2(I(cm) + m(d^2)) [17].

Por tanto, el momento de inercia del sistema barra-masas será: I = I(b) + 2(I(m) + m(d^2))

[18].

Se observa que se puede variar el momento de inercia en el péndulo que hemos

compuesto con variar la distancia de las masas móviles al eje. I será proporcional a la

Page 8: Vibraciones y Modulo de Torsioningles

7

distancia al cuadrado. Con lo cual, se consigue de forma simple variar de forma regular y

medida el momento de inercia.

La ecuación de una recta que representa la dependencia lineal entre T^2 y d^2 :

T^2 = 4(π^2) I/D [19].

La contribución de los cilindros es independiente de la posición 1r en la que se encuentran

los cilindros y se puede calcular como: I(m) = ½ m ( R2^2 - R1^2 ) [20]. Donde R1 y R2 son

los radios exterior y interior de los cilindros, respectivamente.

Observamos que tenemos dos incógnitas: D (la incógnita que buscamos) y barraI. Podemos

eliminar este inconveniente cambiamos la posición de los cilindros a una distancia

r2=12.5cm del eje de suspensión. Hacemos oscilar de nuevo el sistema y medimos el

nuevo periodo T2 correspondiente a esta posición.

Si restamos las ecuaciones correspondientes a los periodos de las dos posiciones de los

cilindros, eliminamos los términos I(b) y I(m) obteniendo así una ecuación en la cual la

única incógnita es D:

T1^2 - T^2 = 4(π^2) [ 2 m ( r1^2 – r2^2 ) / D ] [21]

D = 8(π^2) m ( r1^2 – r2^2 ) / (T1^2 - T2^2) [22]

Una vez determinado D, se puede hallar el valor del módulo de torsión G del material de la

varilla midiendo el radio R y la longitud L de la misma.

Material necesario:

Para el desarrollo de esta experiencia es necesario contar con algunos objetos de carácter

científico aunque también se utilizan muchos otros que bien pueden ser encontrados de

manera cotidiana.

La base estructural del experimento, la balanza de torsión, esta formada por una serie de

soportes que sujetan la varilla de manera perpendicular a la base donde se situa la sección

trasversal y una circunferencia graduada para facilitar la medición del ángulo desviado.

Page 9: Vibraciones y Modulo de Torsioningles

8

Es fundamental para la realización del primer apartado de la práctica la utilización de, al

menos, un dinamómetro. En nuestro caso se han utilizado 3 con distinta sensibilidad para

una mayor precisión.

Las piezas clave son, obviamente, las distintas varillas metalicas que se pretenden analizar,

seleccionando una varilla de acero, otra de cobre, otra de latón y cinco varillas de

aluminio, tres de ellas con la misma longitud y distinto diámetro y otras 3 con el mismo

diámetro y diferente longitud .También es preciso utilizar un calibre o Pie de rey para

poder tener una buena medida de las dimensiones de los diámetros de las varillas

estudiadas.

Para poder contabilizar el numero de oscilaciones dadas por el péndulo de torsión y no

cometer un gran error de medida es necesario contar con una fotocélula que registre el

paso de la sección transversal por un mismo punto.

Por último, se necesitan una serie de pesas iguales para situarlas a distintas distancias del

eje.

Page 10: Vibraciones y Modulo de Torsioningles

9

4) PRESENTACIÓN DE LOS RESULTADOS:

Page 11: Vibraciones y Modulo de Torsioningles

10

Page 12: Vibraciones y Modulo de Torsioningles

11

5) DISCUSIÓN DE LOS RESULTADOS:

- Al analizar la barra de cobre para determinar su módulo de torsión en el primer

apartado, se puede observar en la gráfica como, a medida que aumenta el ángulo de

desvío o de torsión de la varilla, el momento resultante de las fuerzas recuperadoras

es mayor. Un comportamiento lógico y acorde con la teoría y lo contrastado en otras

experiancias realizadas por compañeros.

Lo mismo ocurre en el caso de la barra de acero, pero aquí se puede observar

claramente que el aumento que se produce en el momento de las fuerzas

recuperadoras conforme aumenta el ángulo de desvío es practicamente el doble al

experimentado por la varilla de cobre.

Esto se ve reflejado en las propiedades de ambos materiales, donde el acero es un

metal con una gran resistencia a la torsión, lo que se traduce en una gran dureza,

mientras que el cobre es un metal mucho más maleable y frágil.

- En el estudio de las distintas barras de aluminio con distinta longitud e igual diámetro

se ha obtenido que la proporción entre la longitud y el período de oscilación disminuye

conforme lo hacen cada una de las dos magnitudes. Esto se traduce en que cuanto

más corta es la varilla más resistencia opone a la torsión y por tanto las fuerzas

recuperadoras que lo hacen girar son más fuerte y consecuentemente el giro es más

rápido y el período menor. Lo cual es lo esperado y lo predicho por la teoria y por otros

experimentos del mismo tipo.

Cuando se analizan los alambres de aluminio de igual longitud y distinto diámetro, por

el contrario, se obtiene que a medida que aumenta el diámetro de las barras el

período de oscilación disminuye. O sea que cuanto más fina sea la varilla menos

resistencia opone a la torsión y por tanto las fuerzas recuperadoras que producen el

giro son menores y, con ello, el período es mayor al darse un giro más lento.

Estas características que se deducen nos son intrínsecas de cada tipo de material,

como se ha podido comprobar, no dependen del material sino de su forma externa, su

diseño y sus características físicas externas.

Estas conclusiones permiten comprender el por qué de muchos diseños de estructuras

o máquinas y el hecho de que cuanto más robusto y grueso es, más resistente a

esfuerzos mecánicos de este tipo.

Page 13: Vibraciones y Modulo de Torsioningles

12

6) CONCLUSIONES:

Las conclusiones globales que puedo extraer del experimento es que el objetivo de la

determinación del módulo de torsión se ha alcanzado mediante un montaje

experimental relativamente sencillo y que puede ser reproducido en cualquier

laboratorio, pues los instrumentos empleados son comunes. Por tanto, mediante la

sencilla medida de los períodos podemos obtener una aproximación relativamente

buena sobre el módulo de rigidez del material estudiado.

No obstante, como he podido observar en la investigación en los libros sobre los

módulos de rigidez, no hay valores aceptados como si de constantes se tratasen, sino

que existe una pequeña variación pues los materiales son siempre imperfectos y al

estudiarse sus propiedades y extrapolarlas al resto de materiales del mismo tipo, se

está suponiendo que éstos son de las mismas características exactamente, lo cual no

se da en la realidad, ni las condiciones atmosféricas de las que dependen. Por tanto,

aunque mejorásemos el experimento y lo repitiésemos varias veces, el resultado no

sería siempre el mismo y nos daría un valor aproximado del módulo de torsión, a partir

del cual podemos afirmar a qué materiales es probable que corresponda.

7) BIBLIOGRAFÍA:

- Ortega, Manuel R. (1989-2006). Lecciones de Física (4 volúmenes). Monytex. ISBN 84-

404-4290-4, ISBN 84-398-9218-7, ISBN 84-398-9219-5, ISBN 84-604-4445-7.

- Resnick,R. & Halliday, D. (1996). Physics. John Wiley & Sons. ISBN 0-471-83202-2.

- Marion, Jerry B. (1996). Dinámica clásica de las partículas y sistemas. Barcelona: Ed.

Reverté. ISBN 84-291-4094-8.

- Tipler, Paul A. (2000). Física para la ciencia y la tecnología (2 volúmenes). Barcelona:

Ed. Reverté. ISBN 84-291-4382-3.