Diapo

27
INSTITUTO TECNOLOGICO SUPERIOR DE MISANTLA MATERIA: QUIMICA

Transcript of Diapo

INSTITUTO TECNOLOGICO SUPERIOR DE MISANTLA

MATERIA: QUIMICA

Los estados de agregación de la materiaEstado solido

Estado solido cristalinoEstado liquidoEstado gaseoso

Estado gelEstado vítreo

Mezcla homogéneaMezcla heterogénea

Clasificación de las sustanciasPropiedades intensivasPropiedades extensivas

Base experimental de la teoría cuánticaTeoría atómica de Dalton

Teoría atómica de Max PlanckPropiedades periódicas

Principales propiedades periódicasEstructura electrónicaPotencial de ionización

ElectronegatividadInfinidad electrónica

Carácter metálicoValencia iónica.

SÓLIDO LÍQUIDO GAS

Masa constante

Volumen constante

Forma constante

Masa constante

Volumen constante

Forma variable

Masa constante

Volumen variable

Forma variable

LOS ESTADOS DE AGREGACIÓN DE LA MATERIA

Todo en el Universo está formado por materia. La materia se puede encontrar en 3 estados de agregación o estados físicos: sólido, líquido y gaseoso. Sus propiedades son:

Estado sólido

Estado solido

Los sólidos se caracterizan por tener forma y volumen constantes. Esto se debe a que las partículas que los forman están unidas por unas fuerzas de atracción grandes de modo que ocupan posiciones casi fijas.En el estado sólido las partículas solamente pueden moverse vibrando u oscilando alrededor de posiciones fijas, pero no pueden moverse trasladándose libremente a lo largo del sólido.Las partículas en el estado sólido propiamente dicho, se disponen de forma ordenada, con una regularidad espacial geométrica, que da lugar a diversas estructuras cristalinas.Al aumentar la temperatura aumenta la vibración de las partículas.

los cristales están formados por la unión de partículas dispuestas de forma regular siguiendo un esquema determinado que se reproduce, en forma y orientación, en todo el cristal y que crea una red tridimensional.

Estado solido cristalinoEstado solido cristalino

Estado LiquidoEstado liquido

Los líquidos, al igual que los sólidos, tienen volumen constante. En los líquidos las partículas están unidas por unas fuerzas de atracción menores que en los sólidos, por esta razón las partículas de un líquido pueden trasladarse con libertad. El número de partículas por unidad de volumen es muy alto, por ello son muy frecuentes las colisiones y fricciones entre ellas.Así se explica que los líquidos no tengan forma fija y adopten la forma del recipiente que los contiene. También se explican propiedades como la fluidez o la viscosidad.En los líquidos el movimiento es desordenado, pero existen asociaciones de varias partículas que, como si fueran una, se mueven al unísono. Al aumentar la temperatura aumenta la movilidad de las partículas (su energía).

Estado gaseosoEstado gaseoso

Los gases, igual que los líquidos, no tienen forma fija pero, a diferencia de éstos, su volumen tampoco es fijo. También son fluidos, como los líquidos.En los gases, las fuerzas que mantienen unidas las partículas son muy pequeñas. En un gas el número de partículas por unidad de volumen es también muy pequeño.Las partículas se mueven de forma desordenada, con choques entre ellas y con las paredes del recipiente que los contiene. Esto explica las propiedades de expansibilidad y compresibilidad que presentan los gases: sus partículas se mueven libremente, de modo que ocupan todo el espacio disponible. La compresibilidad tiene un límite, si se reduce mucho el volumen en que se encuentra confinado un gas éste pasará a estado líquido.Al aumentar la temperatura las partículas se mueven más deprisa y chocan con más energía contra las paredes del recipiente, por lo que aumenta la presión.

Estado GelEstado Gel

El estado de gel es la resistencia de un liquido la fluir libremente. Propiedades: Los geles presentan una densidad similar a los líquidos, sin embargo su estructura se asemeja más a la de un sólido. Ciertos geles presentan la capacidad de pasar de un estado coloidal a otro, es decir, permanecen fluidos cuando son agitados y se solidifican cuando permanecen inmóviles. Esta característica se denomina tixotropía. El proceso por el cual se forma un gel se denomina gelación.

Líquido de alta viscosidad que ha perdido su capacidad de fluir.

Estado VítreoEstado Vítreo

Las mezclas homogéneas son aquellas en las que los componentes de la mezcla no son identificables a simple vista. Una mezcla homogénea importante de nuestro planeta es el aire . El aire está formado por varios componentes como: Oxigeno: Elemento O. Nitrógeno: Elemento N. Dióxido de carbono: Compuesto CO2 Vapor de agua

Entre las mezclas homogéneas se distingue un tipo especial denominado disolución o solución. Al componente que se encuentra en mayor cantidad se le denomina solvente o disolvente y al que se encuentra en menor cantidad, soluto.

Mezcla homogénea

Una mezcla heterogénea es aquella que posee una composición no uniforme en la cual se pueden distinguir a simple vista sus componentes y está formada por dos o más sustancias, físicamente distintas, distribuidas en forma desigual.

Mezcla heterogénea

Clasificación de las sustancias

Propiedades físicas y químicas

Propiedades intensivas y extensivas

Son aquellas que no dependen de la cantidad de sustancia o del tamaño de un cuerpo, por lo que el valor permanece inalterable al subdividir el sistema inicial en varios subsistemas, por este motivo no son propiedades aditivas.

Propiedades Intensivas

Son las que dependen de la cantidad de sustancias del sistema, y son recíprocamente equivalentes a las intensivas. Una propiedad extensiva depende por tanto del "tamaño" del sistema. Una propiedad extensiva tiene la propiedad de ser aditiva en el sentido de que si se divide el sistema en dos o más partes, el valor de la magnitud extensiva para el sistema completo es la suma de los valores de dicha magnitud para cada una de las partes.En general el cociente entre dos magnitudes extensivas nos da una magnitud intensiva, por ejemplo la división entre masa y volumen nos da la densidad.

Propiedades extensivas

Base experimental de la teoría cuántica

TEORIA ATOMICA DE DALTON

TEORÍA CUÁNTICA DE MAX PLANCK

TEORIA ATOMICA DE DALTON

La teoría atómico-molecular clásica tiene por base la teoría atómica de Dalton. Existe entre estas dos teorías algunas diferencias fundamentales.Para Dalton, la partícula mas pequeña de una sustancia era el átomo. Si la sustancia era simple, Dalton hablaba de "átomos simples"; por ejemplo de cloro, de hidrogeno , etc. Si la sustancia era Compuesta, Dalton hablaba de" átomos compuestos"; por ejemplo de agua. En realidad, los "átomos" de Dalton, son las partículas que nosotros Llamamos moléculas Los siguientes postulados, son los que constituyen la teoría atómico-molecular clásica: (1 - Toda la materia es discreta y esta formada por partículas pequeñas, definidas e indestructibles denominadas átomos, que son indivisibles por los métodos químicos ordinarios, (2 - Los átomos de un mismo elemento son iguales y tienen las mismas propiedades; los átomos de elementos distintos son diferentes y tienen propiedades también diferentes (3 - Las moléculas se forman por la unión de un numero entero de átomos del mismo o de distintos elementos, en relaciones numéricas simples.

Base Experimental Teoría Cuántica de Max Planck

Teoría cuántica, teoría física basada en la utilización del concepto de unidad cuántica para describir las propiedades dinámicas de las partículas subatómicas y las interacciones entre la materia y la radiación. Las bases de la teoría fueron sentadas por el físico alemán Max Planck, que en 1900 postuló que la materia sólo puede emitir o absorber energía en pequeñas unidades discretas llamadas cuantos. Otra contribución fundamental al desarrollo de la teoría fue el principio de incertidumbre, formulado por el físico alemán Werner Heidelberg en 1927, y que afirma que no es posible especificar con exactitud simultáneamente la posición y el momento lineal de una partícula subatómica.

Propiedades periódicas

¿Qué son?

Son propiedades que presentan los elementos químicos y que se repiten secuencialmente en la tabla periódica. Por la colocación en la misma de un elemento, podemos deducir que valores presentan dichas propiedades así como su comportamiento químico.

Su estudio en la tabla

Tal y como hemos dicho, vamos a encontrar una periodicidad de esas propiedades en la tabla. esto supone, por ejemplo, que la variación de una de ellas en los grupos va a responder a una regla general. Esto nos permite, al conocer estas reglas de variación, cual va a ser el comportamiento químico de un elemento, ya que dicho comportamiento, depende en gran manera, de sus propiedades periódicas.

Principales propiedades periódicasHay un gran número de propiedades periódicas. Entre las más importantes destacaríamos:

- Estructura electrónica: distribución de los electrones en los orbitales del átomo

- Potencial de ionización: energía necesaria para arrancarle un electrón.

- Electronegatividad: mide la tendencia para atraer electrones.

- Afinidad electrónica: energía liberada al captar un electrón.

- Carácter metálico: define su comportamiento metálico o no metálico.

- Valencia iónica: número de electrones que necesita ganar o perder para el octete.

Estructura electrónica

Niveles de energía 1 2 3 4

Subniveles s s p s p d s p d f

Número de orbitales de cada tipo 1 1 3 1 3 5 1 3 5 7

Denominación de los orbitales

1s

2s 2p

3s 3p 3d

4s 4p 4d 4f

Número máximo de electrones en los orbitales

2 2 - 6

2 - 6 - 10

2- 6- 10- 14

Número máximo de electrones por nivel 2 8 18 32

Las propiedades de los elementos dependen, sobre todo, de cómo se distribuyen sus electrones en la corteza. El siguiente modelo interactivo te permite conocer la estructura electrónica de los elementos de la tabla periódica:

Aunque los conocimientos actuales sobre la estructura electrónica de los átomos son bastante complejos, las ideas básicas son las siguientes:

Potencial de ionizaciónEl potencial de ionización es la energía que es necesaria suminístrale a un átomo para arrancarle un electrón de su capa de valencia, convirtiendo el átomo en un ion positivo o catión. Nos ceñiremos al primer potencial de ionización, energía necesaria para extraer un único electrón del átomo, aunque en muchos elementos se puede hablar de segundo potencial de ionización, energía necesaria para arrancar un segundo electrón al átomo que ya ha perdido uno, o de tercer, cuarto, etc. potenciales de ionización.

Dos factores influirán sobre el potencial de ionización. Por una parte será tanto mayor cuanto más atraído esté el electrón que se pierde por el núcleo atómico. Por otro lado, como los átomos tienden a tener ocho electrones en su capa de valencia, acercarse a este ideal disminuirá el potencial de ionización, y alejarse de él lo aumentará.

Electronegatividad

     La electronegatividad de un elemento mide su tendencia a atraer hacia sí electrones, cuando está químicamente combinado con otro átomo. Cuanto mayor sea, mayor será su capacidad para atraerlos.     Pauling la definió como la capacidad de un átomo en una molécula para atraer electrones hacia así. Sus valores, basados  en datos termoquímicos, han sido determinados en una escala arbitraria, denominada escala de Pauling, cuyo valor máximo es 4 que es el valor asignado al flúor, el elemento más electronegativo. El elemento menos  electronegativo, el cesio, tiene una electronegatividad de 0,7

La electronegatividad de un átomo en una molécula está relacionada con su potencial de ionización y su electroafinidad.

La afinidad electrónica se define como la energía que liberará un átomo, en estado gaseoso, cuando captura un electrón y se convierte en un ión negativo o anión.

Como el potencial de ionización, la afinidad electrónica dependerá de la atracción del núcleo por el electrón que debe capturar, de la repulsión de los electrones existentes y del acercamiento o alejamiento a completar la capa de valencia con ocho electrones.

Mientras que el potencial de ionización se puede medir directamente y con relativa facilidad, la medición de la afinidad electrónica es complicada y sólo en muy pocos casos puede realizarse de forma directa y los datos que se tienen no son fiables.

Carácter metálico

Un elemento se considera metal desde un punto de vista electrónico cuando cede fácilmente electrones y no tiene tendencia a ganarlos; es decir, los metales son muy poco electronegativos. Un no metal es todo elemento que difícilmente cede.

La valencia atómica, o valencia de un átomo es el número de electrones que están siendo compartidos por un átomo en un enlace iónico o covalente. La valencia no debe confundirse con un concepto relacionado pero algo más avanzado, el estado de oxidación. El estado de oxidación o número de oxidación se define como la suma de cargas positivas y negativas de un átomo, lo cual indirectamente indica el número de electrones que tiene el átomo. El estado de oxidación es una aproximación: la mecánica cuántica, teoría aceptada en la actualidad para describir las propiedades de partículas muy pequeñas, impide adjudicar los electrones a un átomo o a otro en una molécula.

Valencia iónica