MONOGRAFIA - ESTADISTICA 1

download MONOGRAFIA -  ESTADISTICA 1

of 20

  • date post

    12-Nov-2015
  • Category

    Documents

  • view

    20
  • download

    6

Embed Size (px)

description

toodsobre la estadistica

Transcript of MONOGRAFIA - ESTADISTICA 1

E

I.S.T.P. TAYLOR

DEDICATORIA

A mis Maestros, gracias por su tiempo, por su apoyo as como por la sabidura que me transmiten en el desarrollo de mi formacin profesional, en especial al Profesor, por haber guiado el desarrollo de este trabajo y llegar a la culminacin del mismo.

INDICEDEDICATORIA. 01NDICE. 02 PRESENTACIN. 03INTRODUCCIN. 04TEMAESTADSTICA. 051. Definicin:. 05 Estadstica descriptiva. 05 Estadstica inferencial. 062. Clasificacin de la estadstica. 07 La estadstica inferencial o inductiva . 07 La estadstica descriptiva o deductiva. 073. Evolucin de la estadstica. 084. Ejemplos de estadstica.. 12CONCLUSIONES. 14SUGERENCIAS. 15ANEXOS. 16BIBLIOGRAFA. 17

PRESENTACIN

Hablar de estadstica es hablar de datos sobre un fenmeno, acontecimiento, situacin; Dichos datos recopilados, organizados y resumidos para ser analizados, nos ayudan de cierta forma a conocer o a entender y reconocer diversas situaciones, en la vida. La estadstica nos puede hablar de posibilidades, promedios, nos muestra de manera grafica comportamientos, hechos en apariencia separados. La estadstica los puede agrupar si muestran caractersticas semejantes, si somos fabricantes, maquiladores, cocineros, podemos observar la frecuencia de errores en nuestro trabajo, la eficiencia de nuestro negocio, el promedio de productos fabricados por da, tantos fenmenos-hechos ocurridos en nuestro trabajo, los podemos visualizar de manera representativa gracias a la estadstica. Observar, analizar y obtener respuestas eso buscamos como seres humanos. Por otro lado hablar de probabilidades, un mundo de posibilidades desde el momento en que nacemos, probabilidad de nacer en la abundancia o en la pobreza extrema, llevar una vida sana, probabilidad de nacer en un pas desarrollado o pobre, estudiar en una escuela pblica o privada, encontrar un empleo bien pagado, casarse y ser feliz, ser soltero y lograr todos tus propsitos, comprar una casa nueva, el auto que te gusta, todo, absolutamente todo nicamente son posibilidades y conforme caminas en la vida eres parte de ellas o en verdad ni siquiera eres parte de la muestra donde se estimaron, un campo muy amplio el cual te ayuda a tomar decisiones, toda una vida siendo parte de las estadsticas, lo habas pensado? Hblame estadstica, mustrame como t la aplicas en tu vida o ms bien de qu forma la ves reflejada en tus actividades, tu sabes que hablar de estadstica es hablar de posibilidades (probabilidad), promedios (media), eventos que se repiten con frecuencia (moda), fenmenos que se pueden entender cuando se agrupan y muestran grficamente (graficas de barras, grficos de pastel, etc.) y muchas otras cosas mas...INTRODUCCIN

Se suele pensar en una relacin de datos numricos presentada de forma ordenada y sistemtica. Esta idea es la consecuencia del concepto popular que existe sobre el trmino y que cada vez est ms extendido debido a la influencia de nuestro entorno, ya que hoy da es casi imposible que cualquier medio de difusin, peridico, radio, televisin, etc, no nos aborde diariamente con cualquier tipo de informacin estadstica sobre accidentes de trfico, ndices de crecimiento de poblacin, turismo, tendencias polticas, etc."ESTADISTICA" se deriv de la palabra "ESTADO". La funcin de los gobiernos entre otras cosas es llevar los registros de poblacin, nacimientos, cosechas, impuestos y toda la informacin que engloba el estado, es as que, tradicionalmente se defini a la estadstica como un instrumento de compilacin, organizacin, presentacin y anlisis de datos numricos.Slo cuando nos adentramos en un mundo ms especfico como es el campo de la investigacin de las Ciencias Sociales: Medicina, Biologa, Psicologa, ... empezamos a percibir que la Estadstica no slo es algo ms, sino que se convierte en la nica herramienta que, hoy por hoy, permite dar luz y obtener resultados, y por tanto beneficios, en cualquier tipo de estudio, cuyos movimientos y relaciones, por su variabilidad intrnseca, no puedan ser abordadas desde la perspectiva de las leyes deterministicas. Podramos, desde un punto de vista ms amplio, definir la estadstica como la ciencia que estudia cmo debe emplearse la informacin y cmo dar una gua de accin en situaciones prcticas que entraan incertidumbre.La estadstica es una ciencia aplicada de las matemticas y es una valiosa herramienta para la toma de decisiones. Permite el estudio de fenmenos mediante la descripcin del mismo a travs de inferencias mediante distribuciones probabilsticas.La Estadstica se ocupa de los mtodos y procedimientos para recoger, clasificar, resumir, hallar regularidades y analizar los datos, siempre y cuando la variabilidad e incertidumbre sea una causa intrnseca de los mismos; as como de realizar inferencias a partir de ellos, con la finalidad de ayudar a la toma de decisiones y en su caso formular predicciones.

TEMAESTADSTICA1. Definicin: La estadstica es una ciencia formal y una herramienta que estudia el uso y los anlisis provenientes de una muestra representativa de datos, busca explicar las correlaciones y dependencias de un fenmeno fsico o natural, de ocurrencia en forma aleatoria o condicional.

Sin embargo, la estadstica es ms que eso, es decir, es la herramienta fundamental que permite llevar a cabo el proceso relacionado con la investigacin cientfica.

Es transversal a una amplia variedad de disciplinas, desde la fsica hasta las ciencias sociales, desde las ciencias de la salud hasta el control de calidad.

Se usa para la toma de decisiones en reas de negocios o instituciones gubernamentales.

La estadstica se divide en dos grandes reas:

Estadstica descriptiva: Se dedica a la descripcin, visualizacin y resumen de datos originados a partir de los fenmenos de estudio. Los datos pueden ser resumidos numrica o grficamente. Ejemplos bsicos de parmetros estadsticos son: la media y la desviacin estndar. Algunos ejemplos grficos son: histograma, pirmide poblacional, grfico circular, entre otros. Estadstica inferencial: Se dedica a la generacin de los modelos, inferencias y predicciones asociadas a los fenmenos en cuestin teniendo en cuenta la aleatoriedad de las observaciones. Se usa para modelar patrones en los datos y extraer inferencias acerca de la poblacin bajo estudio. Estas inferencias pueden tomar la forma de respuestas a preguntas s/no (prueba de hiptesis), estimaciones de unas caractersticas numricas (estimacin), pronsticos de futuras observaciones, descripciones de asociacin (correlacin) o modelamiento de relaciones entre variables (anlisis de regresin). Otras tcnicas de modelamiento incluyen anova, series de tiempo y minera de datos.

2. Clasificacin de la estadsticaEl estudio de la estadstica se divide clsicamente en dos, la estadstica descriptiva y la estadstica inferencial.

La estadstica inferencial o inductiva sirve extrapolar los resultados obtenidos en el anlisis de los datos y a partir de ello predecir acerca de la poblacin, con un margen de confianza conocido.

La estadstica descriptiva o deductiva se construye a partir de los datos y la inferencia sobre la poblacin no se puede realizar, al menos con una confianza determinada, la representacin de la informacin obtenida de los datos se representa mediante el uso de unos cuantos parmetros y algunas graficas planteadas de tal forma que den importancia los mismos datos.3. Evolucin de la estadsticaEVOLUCION HISTORICA DE LA ESTADISTICA

Los comienzos de la estadstica pueden ser hallados en el antiguo Egipto, cuyos faraones lograron recopilar, hacia el ao 3050 antes de Cristo, prolijos datos relativos a la poblacin y la riqueza del pas.

En el antiguo Israel la Biblia da referencias, en el libro de los Nmeros, de los datos estadsticos obtenidos en dos recuentos de la poblacin hebrea. El rey David por otra parte, orden a Joab, general del ejrcito hacer un censo de Israel con la finalidad de conocer el nmero de la poblacin.

Tambin los chinos efectuaron censos hace ms de cuarenta siglos. Los griegos efectuaron censos peridicamente con fines tributarios, sociales (divisin de tierras) y militares (clculo de recursos y hombres disponibles). La investigacin histrica revela que se realizaron 69 censos para calcular los impuestos, determinar los derechos de voto y ponderar la potencia guerrera.

Pero fueron los romanos, maestros de la organizacin poltica, quienes mejor supieron emplear los recursos de la estadstica. Cada cinco aos realizaban un censo de la poblacin y sus funcionarios pblicos tenan la obligacin de anotar nacimientos, defunciones y matrimonios, sin olvidar los recuentos peridicos del ganado y de las riquezas contenidas en las tierras conquistadas. Para el nacimiento de Cristo suceda uno de estos empadronamientos de la poblacin bajo la autoridad del imperio.

Durante los mil aos siguientes a la cada del imperio Romano se realizaron muy pocas operaciones Estadsticas, con la notable excepcin de las relaciones de tierras pertenecientes a la Iglesia, compiladas por Pipino el Breve en el 758 y por Carlomagno en el 762 DC. Durante el siglo IX se realizaron en Francia algunos censos parciales de siervos. En Inglaterra, Guillermo el Conquistador recopil el Domesday Book o libro del Gran Catastro para el ao 1086, un documento de la propiedad, extensin y valor de las tierras de Inglaterra. Esa obra fue el primer compendio estadstico de Inglaterra.Aunque Carlomagno, en Francia; y Guillermo el Conquistador, en Inglaterra, trataron de revivir la tcnica romana, los mtodos estadsticos permanecieron casi olvidados durante la Edad Media.

Durante los siglos XV, XVI, y XVII, hombres como Leonardo de Vinci, Nicols Coprnico, Galileo, Neper, William Harvey, Sir Francis Bacon y Ren Descartes, hicieron grandes operaciones al mtodo cientfico, de tal forma que cuando se crearon los Estados Nacionales y surgi como fuerza el comercio internacional exista ya u