Movimiento Ondulatorio

11
MOVIMIENTO ONDULATORIO ONDA, CARACTERISTICAS: Se entiende por onda a aquella perturbación que transporta energía, y que se propaga en el tiempo y espacio. La onda tiene una vibración de forma ondulada que se inicia en un punto y continúa hasta que choca con otro cuerpo. Una onda es una perturbación que avanza o que se propaga en un medio material o incluso en el vacío. A pesar de la naturaleza diversa de las perturbaciones que pueden originarlas, todas las ondas tienen un comportamiento semejante. El sonido es un tipo de onda que se propaga únicamente en presencia de un medio que haga de soporte de la perturbación. Algunas clases de ondas precisan para propagarse de la existencia de un medio material que haga el papel de soporte de la perturbación; se denominan genéricamente ondas mecánicas. El sonido, las ondas que se forman en la superficie del agua, las ondas en cuerdas, son algunos ejemplos de ondas mecánicas y corresponden a compresiones, deformaciones y, en general, a perturbaciones del medio que se propagan a través suyo. Sin embargo, existen ondas que pueden propasarse aun en ausencia de medio material, es decir, en el vacío. Son las ondas electromagnéticas o campos electromagnéticos viajeros; a esta segunda categoría pertenecen las ondas luminosas. Independientemente de esta diferenciación, existen ciertas características que son comunes a todas las ondas, cualquiera que sea su naturaleza, y que en conjunto definen el llamado comportamiento ondulatorio, El tipo de movimiento característico de las ondas se denomina movimiento ondulatorio. Su propiedad esencial es que no implica un transporte de materia de un punto a otro. Las partículas constituyentes del medio se desplazan relativamente poco respecto de su posición de equilibrio. Lo que avanza y progresa no son ellas, sino la perturbación que transmiten unas a otras. El movimiento ondulatorio supone únicamente un transporte de energía y de cantidad de movimiento. Conocer los parámetros característicos, su lugar en la función de onda y como determinan la energía transportada.

description

Temas importantes sobre el Movimiento Ondulatorio de Biofísica

Transcript of Movimiento Ondulatorio

MOVIMIENTO ONDULATORIO

ONDA, CARACTERISTICAS:

Se entiende por onda a aquella perturbación que transporta energía, y que se propaga en el tiempo y espacio. La onda tiene una vibración de forma ondulada que se inicia en un punto y continúa hasta que choca con otro cuerpo.

Una onda es una perturbación que avanza o que se propaga en un medio material o incluso en el vacío. A pesar de la naturaleza diversa de las perturbaciones que pueden originarlas, todas las ondas tienen un comportamiento semejante. El sonido es un tipo de onda que se propaga únicamente en presencia de un medio que haga de soporte de la perturbación.

Algunas clases de ondas precisan para propagarse de la existencia de un medio material que haga el papel de soporte de la perturbación; se denominan genéricamente ondas mecánicas. El sonido, las ondas que se forman en la superficie del agua, las ondas en cuerdas, son algunos ejemplos de ondas mecánicas y corresponden a compresiones, deformaciones y, en general, a perturbaciones del medio que se propagan a través suyo. Sin embargo, existen ondas que pueden propasarse aun en ausencia de medio material, es decir, en el vacío. Son las ondas electromagnéticas o campos electromagnéticos viajeros; a esta segunda categoría pertenecen las ondas luminosas.

Independientemente de esta diferenciación, existen ciertas características que son comunes a todas las ondas, cualquiera que sea su naturaleza, y que en conjunto definen el llamado comportamiento ondulatorio,

El tipo de movimiento característico de las ondas se denomina movimiento ondulatorio. Su propiedad esencial es que no implica un transporte de materia de un punto a otro. Las partículas constituyentes del medio se desplazan relativamente poco respecto de su posición de equilibrio. Lo que avanza y progresa no son ellas, sino la perturbación que transmiten unas a otras. El movimiento ondulatorio supone únicamente un transporte de energía y de cantidad de movimiento.

Conocer los parámetros característicos, su lugar en la función de onda y como determinan la energía transportada.

Analizar su significado y dependencia con las magnitudes que intervienen en el fenómeno físico.

Relacionar los distintos parámetros entre si y con la velocidad de propagación.

Establecer la función de onda armónica. 

Una forma habitual de introducir los parámetros que intervienen en la descripción de ondas es a partir de una definición previa y justificar su significado posteriormente  en la función de onda. Algunos términos son ya conocidos de etapas previas, por ejemplo amplitud como valor máximo que puede alcanzar la perturbación o la frecuencia como rapidez con que cambia la perturbación en un punto.

En la siguiente experiencia tratamos de introducir gradualmente las características de una onda, intentando comprender su significado y relaciones, lo que nos lleva a conocer las causas que predeterminan sus valores.

FORMULA VELOCIDAD DE UNA ONDA

v= λf v= velocidad [m/s]

λ= longitud de onda [m]

f= frecuencia [Hz]

ECUACIONES DE ONDA

FUNCIÓN DE ONDA

El valor de la función de onda   asociada con una partícula en movimiento esta relacionada con la probabilidad de encontrar a la partícula en el punto (x,y,z) en el instante de tiempo t.

En general una onda puede tomar valores positivos y negativos. Por

ejemplo la onda

En general una onda puede representarse por medio de una cantidad

compleja

Piense por ejemplo en el campo eléctrico de una onda electromagnética.

Una probabilidad negativa, o compleja, es algo sin sentido. Esto significa que la función de onda no es algo observable. Sin embargo el módulo (o cuadrado) de la función de onda siempre es real y positivo.

Por esto, a   se le conoce como la densidad de probabilidad.

CLASES DE ONDAS

Según el medio en que se propagan

1)      Ondas electromagnéticas: estas ondas no necesitan de un medio para propagarse en el espacio, lo que les permite hacerlo en el vacío a velocidad constante, ya que son producto de oscilaciones de un campo eléctrico que se relaciona con uno magnético asociado.

2)      Ondas mecánicas: a diferencia de las anteriores, necesitan un medio material, ya sea elástico o deformable para poder viajar. Este puede ser sólido, líquido o gaseoso y es perturbado de forma temporal aunque no se transporta a otro lugar.

3)      Ondas gravitacionales: estas ondas son perturbaciones que afectan la geometría espacio-temporal  que viaja a través del vacío. Su velocidad es equivalente a la de la luz. 

Según su propagación:

1)      Ondas unidimensionales: estas ondas, como su nombre indica, viajan en una única dirección espacial. Es por esto que sus frentes son planos y paralelos.

2)      Ondas bidimensionales: estas ondas, en cambio, viajan en dos direcciones cualquieras de una determinada superficie.

3)      Ondas tridimensionales: estas ondas viajan en tres direcciones conformando un frente de esférico que emanan de la fuente de perturbación desplazándose en todas las direcciones.

 

Según su dirección:

1)      Ondas transversales: las partículas por las que se transporta la onda se desplazan de manera perpendicular a la dirección en que la onda se propaga.

2)      Ondas longitudinales: en este caso, las moléculas se desplazan paralelamente a la dirección en que la onda viaja.

 

Según su periodicidad:

1)      Ondas no periódicas: estas ondas son causadas por una perturbación de manera aislada o, si las perturbaciones se dan de manera repetida, estas tendrán cualidades diferentes.

2)      Ondas periódicas: son producidas por ciclos repetitivos de perturbaciones.

ENERGÍA TRANSMITIDA POR LA ONDA

Cuando la onda se traslada por la cuerda aporta la energía necesaria para producir el desplazamiento de cada elemento. La energía que se transmite por unidad de tiempo es la potencia. Puesto que la onda se propaga una longitud de onda en el tiempo de un periodo, la potencia se obtiene multiplicando la energía de un elemento unitario por la velocidad. Si µ es la masa del elemento con longitud unidad su energía tiene el valor de la energía cinética máxima y viene dada por:

 

donde la velocidad máxima se obtiene derivando el desplazamiento:

       

La potencia transmitida por una onda armónica es pues  

y resulta proporcional al cuadrado de la amplitud y al cuadrado de la frecuencia.

INTERFERENCIA

En física la interferencia es un fenómeno en el cual una o más ondas se superponen unas a las otras para producir una onda resultante de mayor o menor amplitud. En la práctica, usualmente la interferencia se refiere a la interacción de ondas que correlacionan, bien porque han surgido de la misma fuente o porque tienen una frecuencia igual o muy próxima. Todas las ondas interfieren, ya sean mecánicas o electromagnéticas.

Para entender el fenómeno simplificaremos al caso de solo dos ondas de tipo sinusoidal de igual amplitud y frecuencia.

Figura 1. Interferenciaconstructiva

Primero debemos definir el concepto de fase, utilizaremos una forma simplificada para la definición y de esta forma hacerlo más fácilmente comprensible. Si dos ondas nacen al mismo tiempo exacto, es decir las crestas y valles de las dos coinciden en tiempo, se dice que ambas están en fase. Si por el contrario las ondas surgieron de forma que en un momento dado, una de ellas está en el valle y la otra en la cresta, entonces están completamente desfasadas o fuera de fase. El grado de desfasaje puede variar desde los casos extremos descritos, a cualquier otra posición relativa mutua de las crestas y valles. Técnicamente el desfasaje se mide en grados, de manera que 0º significa completamente en fase y 180º totalmente desfasadas.

En los diagramas de la figura 1, el trazado superior es la forma de la onda resultante cuando interactúan dos ondas de igual frecuencia y amplitud, aquí se produce lo que se conoce como interferencia constructiva, en este caso, las dos ondas que se superponen están en fase y la onda resultante es la suma de la amplitud de ambas, o lo que es lo mismo, una onda de la misma frecuencia pero de amplitud doble.

Figura 2. Interferenciadestructiva

En el caso de la figura 2 el resultado es la anulación total de la onda, en este caso las ondas entraron en contacto desfasadas 180º, por lo que el valle de una anula por completo la cresta de la otra. A esta interferencia se la llama destructiva.

De lo dicho hasta aquí se puede deducir que la onda resultante mantiene la misma frecuencia pero su amplitud es la suma algebraica de las amplitudes de las ondas interactuantes.

Lo descrito es un caso muy simplificado, en la vida práctica se producen enmarañadas interacciones de múltiples ondas cuyo resultado pueden ser

un patrón de ondas de mucha mayor complejidad.

EL EFECTO DOPPLER

El efecto Doppler no es simplemente funcional al sonido, sino también a otros tipos de ondas, aunque los humanos tan solo podemos ver reflejado el efecto en la realidad cuando se trata de ondas de sonido.

El efecto Doppler es el aparente cambio de frecuencia de una onda producida por el movimiento relativo de la fuente en relación a su observador. Si queremos pensar en un ejemplo de esto es bastante sencillo.

Seguramente más de una vez hayas escuchado la sirena de un coche policía o de una ambulancia pasar frente a ti. Cuando el sonido se encuentra a

mucha distancia y comienza a acercarse es sumamente agudo hasta que llega a nosotros.

Cuando se encuentra muy cerca nuestro el sonido se hace distinto, lo escuchamos como si el coche estuviera parado. Luego cuando continúa su viaje y se va alejando lo que escuchamos es un sonido mucho más grave.

Esto ocurre ya que las ondas aparentan comenzar a juntarse al mismo tiempo que el coche se dirige hacia una dirección. La imagen de abajo explica mejor esta idea sobre las ondas y la velocidad de los coches.

Analicemos la siguiente escena:

La moto (es la fuente sonora) emite un sonido, supongamos de 200 Hz de frecuencia, que viaja por el espacio hacia todas direcciones a una velocidad de 343 metros por segundo. A su vez, la moto lleva una velocidad propia, que supondremos de 80 km por hora (unos 22 m/s).

¿Qué sucede con los receptores respecto a la frecuencia con que perciben el sonido de la moto?

Veamos:

Todo depende de las velocidades de los involucrados.

La chica de la izquierda está en reposo, respecto a ella, el sonido debería llegar a la velocidad de 343 m/s, pero resulta que el emisor del sonido (la moto) se aleja de ella a 22 m/s; por lo tanto, a ella le llega el sonido solo a 321 m/s (343 menos 22), por lo tanto percibirá un sonido de menor frecuencia (ondas más largas, tono menos agudo).

El muchacho de la derecha camina, supongamos a 3 m/s, hacia la moto. Respecto a este muchacho, el sonido viaja hacia él a 343 m/s, más los 22

m/s de la moto y más los 3 m/s de su caminar hacia la moto; por lo tanto, percibirá un sonido de mayor frecuencia, ondas más cortas, tono más agudo).

Entendida esta relación entre las velocidades, ahora mostraremos cómo es posible obtener ecuaciones que nos permiten calcular las variaciones de frecuencia percibidas por un receptor.

Para no complicar vuestra existencia estudiantil estableceremos que la siguiente fórmula general permite hallar la frecuencia que percibirá el receptor u observador:

Donde :

fo = frecuencia que percibe el observador (también se usa como fr o frecuencia de la señal recibida)

ff = frecuencia real que emite la fuente (también se usa como fe o frecuencia de la señal emitida)

vs = velocidad del sonido (343 m/s)

vo = velocidad del observador (también se usa como vr o velocidad del receptor)

vf = velocidad de la fuente (también se usa como ve o velocidad del emisor)

Debemos fijar la atención en los signos + (más) y – (menos) de la ecuación.  Notemos que en el numerador aparece como ± (más menos) y en el denominador aparece invertido (menos más). Esta ubicación de signos es muy importante ya que usar uno u otro depende de si el observador se acerca o se aleja de la fuente emisora de sonido. Importante:

 Si el observador se acerca a la fuente emisora, el signo en el numerador será + (más) y simultáneamente el signo en el denominador será – (menos). Ahora, si el observador se aleja de la fuente emisora, el signo en el numerador será – (menos) y simultáneamente el signo del denominador será + (más).