Sistema de puesta a tierra de tanques Con Productos Inflamables

140
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD ZACATENCO DISEÑO DE LA PROTECCIÓN CONTRA DESCARGAS ATMOSFÉRICAS EN UN TANQUE DE ALMACENAMIENTO DE PRODUCTOS INFLAMABLES TESIS QUÉ PARA OBTENER EL TÍTULO DE INGENIERO ELECTRICISTA PRESENTA: Martínez Contreras David Pablo ASESORES: M. en C. Oscar Luis Puente Navarrete M. en C. Edgar Lorenzo Belmonte González MÉXICO D.F. 09 DE JUNIO DEL 2011

Transcript of Sistema de puesta a tierra de tanques Con Productos Inflamables

Page 1: Sistema de puesta a tierra de tanques Con Productos Inflamables

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA

UNIDAD ZACATENCO

DISEÑO DE LA PROTECCIÓN CONTRA DESCARGAS ATMOSFÉRICAS EN UN TANQUE DE

ALMACENAMIENTO DE PRODUCTOS INFLAMABLES

TESIS

QUÉ PARA OBTENER EL TÍTULO DE

INGENIERO ELECTRICISTA

PRESENTA:

Martínez Contreras David Pablo

ASESORES:

M. en C. Oscar Luis Puente Navarrete

M. en C. Edgar Lorenzo Belmonte González

MÉXICO D.F. 09 DE JUNIO DEL 2011

Page 2: Sistema de puesta a tierra de tanques Con Productos Inflamables

I

INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA. y ELECTRICA

UNIDAD PROFESIONAL" ADOLFO LOPEZ MATEOS" ,

TEMA DE TESIS

INGENIERO ELECTRICISTAQUE PARA'OBTENER EL TItULO DE TESIS Y EXAMEN ORAL INDIVIDUALPOR LA OPCION DE TITULACION

DEBERA(N) DESARROLLAR C. DAVID PABLO MARTlNEZ CONTRERAS

"DISEÑO DE LA PROTECCIÓN CONTRA DESCARGAS ATMOSFÉRICAS EN UN TANQUE DE ALMACENAMIENTO DE PRODUCTOS INFLAMABLES."

"'" " , ,ji'" ,

ESTUDIO Y DISENO DE LA PROTECCI0N CONTRA DESCARGAS ELECTRlCAS ATMOSFERlCAS . .h

APLICADO EN UN TANQUE DE ALMA~ENAMl1ENJO DE. PRODUCTOS INFLAMABLES MEDIANTE UN BLINDAl? Y UN SI~TEMADE PlJESTA A\TI5RRA. ,

~ INTRODUCCIÓN. ..r '" . ~ CONCEPTOS DE B~INDAJEDEJjfQ\JIP~ fI:N$:rkALAeIONE~.

~ PRINCIPIOS Y FUND~~~'ÚOS,nE ~"N ~Si.E~ ~EFYESTAA TIERRA. ~ T~NQUES DE ALMACEN;~IE~]?QIlJ P~O])~~'l'OS.!NJj1I;.AMA~LES.

~ CALCULO DEL NIVEL DE PF.0TECCION,y"Y' DISENQ DEL SISTEMA DE PUESTA A TIERRA MEDIANTE EL PROG~ CAL(X1JO,.87.

~ CONCLUSIONES. . ¡J/ ,

J

MÉXICO D.F., 07 DE MARZO 2012.

ASESORES

M. EN C. EDGA

ltl/'~.I-'/.:>AR DAVID RAMÍREZ ORTIZ DEL DEPARTAMENTO ACADÉMICO DE INGENIERÍA ELÉCTRICA.

Page 3: Sistema de puesta a tierra de tanques Con Productos Inflamables

2

Dedicatorias y Agradecimientos

A Dios por darme la oportunidad de estar aquí y por darme lo

necesario para llegar a ser lo que soy.

A la Virgen de Guadalupe por estar siempre conmigo en los

momentos más difíciles, y con mucha humildad le dedico este

trabajo.

A mis padres: David Martínez Aguilar y Isabel Contreras Contreras, con infinito agradecimiento, gracias por darme su apoyo

incondicional.

A mi hermana Gabriela Martínez Contreras por su apoyo en los

momentos difíciles.

A mis abuelitos maternos el Sr. Calixto Contreras Torres (q.p.d) y

la Sra. María Contreras Arteaga (q.p.d), con infinito cariño y

respeto, porque me enseñaron que la humildad y el trabajo duro, son

el camino hacia el éxito.

A mis abuelitos Paternos el Sr. José Trinidad Martínez Torres

(q.p.d) y la Sra. Emilia Aguilar Lincona (q.p.d), porque aun que

fue cortó el tiempo que los conocí me dieron su apoyo y cariño.

A mi tío el Ing. Eustorgio Contreras Contreras, por sus consejos,

su apoyo moral y por ayudarme a la realización de este trabajo.

A mis familiares por sus grandes consejos y aliento moral.

A mi E.S.I.M.E y mis profesores el M. en C. Oscar Luis Puente

Navarrete y el M. en C. Edgar Lorenzo Belmonte, por su apoyo

incondicional.

A mis compañeros: Ángel Alberto López Trujillo, Luis Ricardo Fernández Esquivel, José de Jesús Sánchez Ruiz, por que mas

que mis compañeros, son mis hermanos de mil y un batallas.

Page 4: Sistema de puesta a tierra de tanques Con Productos Inflamables

3

ÍNDICE GLOSARIO ..................................................................................................................... 9

OBJETIVO GENERAL ............................................................................................... 11

OBJETIVOS ESPECÍFICOS ...................................................................................... 11

JUSTIFICACIÓN ......................................................................................................... 12

1. Introducción

1.1 Tipos de sobretensiones. ....................................................................................... 15

1.1.1 Sobretensiones de origen atmosférico. ........................................................ 16

1.1.1.1 Sobretensiones conducidas. ............................................................. 16

1.1.1.2 Sobretensiones inducidas o radiadas. .............................................. 16

1.1.1.3 Sobretensión producida por la toma de tierra. ................................. 17

1.2 Proceso de carga y descarga de la nube. ............................................................... 17

1.2.1 Mecanismo de electrización. ....................................................................... 18

1.2.2 Inicio de la fase activa. ................................................................................ 18

1.2.3 Madurez de la fase activa. ........................................................................... 18

1.2.4 Fin de la fase activa. .................................................................................... 19

1.3 Forma de onda de la corriente del rayo. ............................................................... 19

1.4 Bases teóricas de las protecciones contra descargas eléctricas atmosféricas. ...... 20

1.4.1 Jaula de Faraday. ......................................................................................... 21

1.4.2 Mástil de Franklin. ....................................................................................... 21

2. Conceptos de blindaje de equipos e instalaciones

2.1 Hilos de guarda. .................................................................................................... 24

2.2 Sistemas de pararrayos. ....................................................................................... 24

2.3 Definición de un sistema de pararrayos. ............................................................... 25

2.4 Tipos de pararrayos. ............................................................................................. 26

2.4.1 Pararrayos tipo Franklin. .............................................................................. 26

2.4.2 Pararrayos radioactivo. ................................................................................. 27

2.4.3 Pararrayos con dispositivo de cebado (PDC). .............................................. 28

2.4.3.1 Pararrayos piezoeléctricos. ............................................................... 29

2.4.3.2 Pararrayos electrónicos. .................................................................... 29

2.4.3.3 Pararrayos PDC puros o mecánicos.................................................. 29

Page 5: Sistema de puesta a tierra de tanques Con Productos Inflamables

4

2.4.4 Pararrayos desionisadores de carga electrostática (CTS). ............................. 29

2.4.5 Pararrayos PDC-E.......................................................................................... 30

2.4.6 Pararrayos stream. ......................................................................................... 30

2.5 Sistemas no convencionales. ................................................................................ 31

2.6 Sistemas de transferencia de carga (CTS). ........................................................... 32

2.7 Dispositivos ESE (Early Streamer Emisión- Emisión Adelantada del Trazador). 32

2.8 Estudio previo de la protección contra el rayo. .................................................... 33

2.8.1 Determinación del punto de impacto. ............................................................ 34

2.8.2 Velocidad de propagación de los trazadores o líderes. .................................. 35

2.8.3 Zona de protección. ....................................................................................... 35

2.8.4 Radio de protección. ...................................................................................... 36

2.9 Guía de evaluación del riesgo de impacto de rayo y selección del nivel de

protección. ...................................................................................................................... 37

2.9.1 Determinación de Frecuencia de impactos de rayo (𝐍𝐝) y frecuencia

aceptable de rayos (𝐍𝐜). ................................................................................................. 39

2.9.2 Frecuencia aceptable de rayos (𝐍𝐜) sobre una estructura. ............................ 42

2.10 Método de selección del nivel de protección..................................................... 43

3. Principios y Fundamentos de un sistema de puesta a tierra

3.1 Sistema de puesta a tierra. .................................................................................... 48

3.2 Objetivo de un sistema de puesta a tierra. ............................................................ 48

3.3 Características del suelo. ...................................................................................... 50

3.4 Resistividad del suelo. .......................................................................................... 50

3.5 Factores que modifican la resistividad del suelo. ................................................. 51

3.6 Métodos utilizados para la medición de la resistividad del suelo. ....................... 54

3.6.1 Método Wenner o método de los cuatro puntos. ........................................... 55

3.6.1.1 Principios del método Wenner. ........................................................ 55

3.6.1.2 Equipo y material empleado. ............................................................ 56

3.6.1.3 Procedimiento de la medición. ......................................................... 56

3.6.2 Método de Schlumberger. ............................................................................ 57

3.6.3 Método de los tres puntos o caída de tensión. ............................................... 59

3.7 Compuestos químicos para la resistividad del suelo. ........................................... 60

3.7.1 Tratamientos para la reducción de la resistividad del suelo. ......................... 61

3.7.1.1 Cloruro de sodio más carbón vegetal. .............................................. 61

Page 6: Sistema de puesta a tierra de tanques Con Productos Inflamables

5

3.7.1.2 Bentonita ............................................................................................ 62

3.8 Criterios de tensión de seguridad......................................................................... 62

3.8.1 Tensión de paso. ........................................................................................... 62

3.8.2 Tensión de contacto. ..................................................................................... 67

3.9 Selección del conductor del sistema de puesta a tierra. ..................................... 69

3.10 Resistencia del sistema de puesta a tierra. ......................................................... 72

3.11 Máxima tensión de malla. .................................................................................. 74

3.12 Máxima tensión de paso. ................................................................................... 77

3.13 Longitud mínima del conductor. ....................................................................... 78

4. Tanques de almacenamiento de productos inflamables

4.1 Patio de tanques. .................................................................................................. 81

4.2 Área de un patio de tanques. ................................................................................ 82

4.3 Tipos de tanques. ................................................................................................. 82

4.3.1Tanques cuadrados o rectangulares. .............................................................. 82

4.3.2 Tanques cilíndricos horizontales. ................................................................. 83

4.3.3 Tanques cilíndricos verticales. ..................................................................... 83

4.3.4 Recipientes a presión (pressure vessels). ...................................................... 87

4.4 Partes que constituyen un tanque de techo flotante. ............................................ 87

4.4.1 Trabajos preliminares. .................................................................................. 95

4.4.2 Cimentación. ................................................................................................. 95

4.4.3 Fondo. ........................................................................................................... 96

4.4.4 Techos. .......................................................................................................... 97

5. Cálculo del nivel de protección y diseño del sistema de puesta a tierra mediante el programa CALIXTO-87

5.1 Funcionamiento del programa CALIXTO-87. .................................................... 99

5.2 Diagrama de flujo del programa CALIXTO-87. ............................................... 101

5.3 Diseño del sistema de blindaje y del sistema de puesta a tierra mediante un

proceso analitico. .......................................................................................................... 103

5.3.1 Cálculo de la superficie de captura. ........................................................... 104

5.3.2 Selección del coeficiente de la situación de la estructura. ......................... 104

5.3.3 Cálculo de la frecuencia aceptable de rayos sobre el tanque (Nc). ........... 104

Page 7: Sistema de puesta a tierra de tanques Con Productos Inflamables

6

5.3.4 Determinación del nivel de protección. ....................................................... 104

5.3.5 Cálculo de la sección transversal del conductor. ......................................... 105

5.3.6 Determinación de tensión de toque y paso. ................................................. 105

5.3.7 Determinación de la longitud del conductor................................................ 105

5.3.8 Resistencia de la red. ................................................................................... 106

5.3.9 Cálculo del número de conductores paralelos en la malla.......................... 107

5.3.10 Cálculo del factor de espaciamiento para la tensión de malla. .................. 107

5.3.11 Cálculo del factor de espaciamiento para la tensión de malla. .................. 107

5.3.12 Cálculo del factor de corrección por geometría. ....................................... 108

5.3.13 Cálculo de la tensión de malla máxima. .................................................... 108

5.3.14 Rediseño del sistema. ................................................................................ 108

5.4 Corrida del programa CALIXTO-87. ............................................................... 114

CONCLUSIONES ...................................................................................................... 120

ANEXOS ..................................................................................................................... 121

REFERENCIAS BIBLIOGRÁFICAS. .................................................................... 138

Page 8: Sistema de puesta a tierra de tanques Con Productos Inflamables

7

ÍNDICE DE TABLAS

Tabla 2.1 Niveles de protección establecidos en la norma CEI 62305-3

[14]...................................................................................................................................38

Tabla 2.2 Efectos del rayo en diferentes estructuras

[26]………………...........................................................................................................38

Tabla 2.3 Densidad de caída de rayos por

Km2 [26]……………………………………………………………………………......38

Tabla 2.4 Tabla que determina el coeficiente C1

[26]……………………………………………………..……………………………....39

Tabla 2.5 Coeficiente de estructura C2

[26]……………………………………………………………..……………………....42

Tabla 2.6 Contenido de estructura C3

[26]..................................................................................................................................42

Tabla 2.7 Ocupación de la estructura C4 [26]………………………………………….42

Tabla 2.8 Consecuencia sobre el entorno (C5)

[26]..................................................................................................................................42

Tabla 2.9 Determinación de la necesidad y el nivel de protección

[26]……………………………………………………………………………………..43

Tabla 2.10 Determinación del nivel de protección

[26]……………………………………………………………………………………..44

Tabla 3.1 Resistividad Promedio

[23]……………………………………………………………………………………..53

Tabla 3.2 Naturaleza del suelo

[23]…………………………………………………………………………………..…53

Tabla 3.3 Valores de Resistividad de Aislantes

[23]……………………………………………………………………………………..64

Tabla 3.4 Características de materiales

[24]………………………………………………………………………………...…...69

Tabla 3.5 Constantes de materiales

[24]………………………………………………………………………………….….70

Tabla 4.1 Colores que deben tener los tanques de almacenamiento

[30]….............................................................................................................................79

Page 9: Sistema de puesta a tierra de tanques Con Productos Inflamables

8

Tabla 4.2 Datos técnicos de los tanques plegables

[30]…………………………………………………….……………………………….83

Tabla 4.3 Dimensiones reales de los tanques de almacenamiento tipo techo flotante

[28]………………………………………………………………………………….….84

Tabla 5.1 Comparación de los resultados obtenidos por el método analítico y los

resultados que arroja l programa CALIXTO-87……………………………………...110

Page 10: Sistema de puesta a tierra de tanques Con Productos Inflamables

9

GLOSARIO

Campo eléctrico atmosférico.- Un término cuantitativo, denotando la fuerza o

intensidad del campo eléctrico de la atmósfera en cualquier punto específico en el

espacio y en el tiempo.

U.M.- Unidad de medida.

C.C.- Corto circuito.

Electrificación de la nube.- El proceso por medio del cual se cargan eléctricamente las

nubes.

Rayo intra nube.- Una descarga de rayo que ocurre entre una zona cargada

positivamente y una zona cargada negativamente, cuando ambas cargas se encuentran

en la misma nube.

Líder.- Canal de alta ionización que se propaga a través del aire por el rompimiento del

dieléctrico, producido por la carga eléctrica descendente.

Líder rápido.- El líder que normalmente inicia cada rayo subsiguiente de una descarga

múltiple de rayos después del primero.

Estratificación del suelo.- Disposición en capas verticales y horizontales de las rocas

sedimentarias.

Descarga eléctrica atmosférica (Rayo).- Descarga eléctrica de corriente muy alta cuya

longitud de trayectoria se mide en kilómetros.

Relámpago.- Descarga eléctrica atmosférica completa, de nube a tierra, o de tierra a

nube, se le llama relámpago.

Rayo en Zigzag.- La forma común de una descarga eléctrica de nube a tierra

visualmente siempre se presenta en mayor o menor grado con varias ramificaciones

(brazos), en forma descendente desde el canal principal del rayo (paso líder).

Descarga eléctrica de Tierra a Nube.- Una descarga eléctrica de rayo en la cual el

proceso del paso líder original empieza en forma ascendente desde algún objeto sobre la

tierra, de manera opuesta a la mayoría de las más comunes descargas de Nube a Tierra.

Factor “K”.- Término común en la industria con el que se conoce la cantidad de

armónicas producida por una carga dada.

Granulometría.- Es la medición de los granos de una formación sedimentaria y el

cálculo de la abundancia de los correspondientes a cada uno de los tamaños previstos

por una escala granulométrica.

Interferencia.- Interferencia es cualquier perturbación eléctrica o electromagnética

extraña que tiende a alterar la recepción de las señales deseadas o produce respuestas

indeseables en un circuito o sistema.

Page 11: Sistema de puesta a tierra de tanques Con Productos Inflamables

10

Sistema de puesta a tierra (S.P.T).- Comprende el conjunto de elementos

interconectados, enterrados en el suelo dentro de un área específica, como electrodos

horizontales (conductores desnudos), verticales (varillas de tierra).

Malla del Sistema de Puesta a Tierra (S.P.T).- Conjunto de electrodos horizontales, el

cual consiste en un cierto número de conductores desnudos enterrados en el suelo,

proporcionando una tierra común para equipos eléctricos o estructuras metálicas,

usualmente en un área común.

Material superficial.- Material instalado encima del suelo, el cual consiste (sin ser

limitativo) en roca triturada, asfalto o algún material hecho por el hombre.

Potencial de malla.- Máxima tensión de contacto que puede ocurrir en el reticulado de

la malla del S.P.T.

Resistencia a tierra de la malla del Sistema de Puesta a Tierra.- Es la resistencia

óhmica entre la malla y un electrodo de tierras remoto de resistencia cero.

Resistividad aparente del suelo.- Se denomina resistividad aparente debido a que

siempre se puede calcular, solo se necesita conocer la localización de los electrodos de

prueba, la tensión y la corriente aplicados.

Resistividad del suelo.- La resistividad eléctrica o resistencia específica del suelo, es la

resistencia de un volumen que tenga un área con sección transversal y longitud

unitarias.

Tensión de contacto.- Diferencia de potencial entre el EPR y el potencial máximo en la

superficie del suelo donde se encuentre una persona tocando con una o ambas manos

una estructura metálica o cualquier elemento conductor directamente unido a la red de

tierra.

Tensión de paso.- Diferencia de potencial máxima que se aplicará a una persona entre

sus pies, cuando en el instante de una falla se encuentre caminando en un área con una

diferencia de potencial en la superficie.

Tensión transferida.- Caso especial de tensión de contacto donde una tensión es

transferida hacia dentro o hacia fuera de la subestación.

Tierra.- Conexión conductora, ya sea intencional o accidental, por medio de la cual un

circuito eléctrico o equipo se conecta a la tierra o a algún cuerpo conductor de

dimensión relativamente grande que cumple la función de la tierra.

Page 12: Sistema de puesta a tierra de tanques Con Productos Inflamables

11

OBJETIVO GENERAL

El objetivo de este trabajo es el estudio y diseño de la protección contra descargas

eléctricas atmosféricas aplicado en un tanque de almacenamiento de productos

inflamables mediante un blindaje y un sistema de puesta a tierra.

OBJETIVOS ESPECÍFICOS

Aportar una posible solución para proteger a los tanques de

almacenamiento de combustible contra las descargas eléctricas

atmosféricas, visto desde un marco teórico-práctico.

Diseño de un sistema de blindaje para la protección de un tanque de

almacenamiento de productos inflamables.

Diseño del sistema de puesta a tierra para la protección de un tanque de

almacenamiento de productos inflamables.

Desarrollar un programa que calcule los sistemas de blindaje y de puesta

a tierra, de acuerdo a estándares internacionales.

Page 13: Sistema de puesta a tierra de tanques Con Productos Inflamables

12

JUSTIFICACIÓN

Existen antecedentes alrededor del mundo que evidencian la necesidad de implementar

una protección contra descargas eléctricas atmosféricas. Analizando específicamente las

actividades de almacenamiento y procesamiento de combustible, los impactos de rayos

representan el 61% de los accidentes iniciados por causas naturales, 16 de cada 20

accidentes que involucran el almacenamiento de productos petroleros se debieron a

tormentas eléctricas. Aproximadamente el 30% de las fallas anuales en el sistema

eléctrico están relacionadas con descargas atmosféricas (tormentas eléctricas), lo cual

representa una pérdida económica bastante fuerte [5].

Como antecedentes se citan los siguientes:

1926-Un rayo causo la explosión en la estación naval de prueba de misiles en Lake

Denmark Nueva Jersey, esto dejo 13 personas muertas y la pérdida económica

ascendió a 70 millones de dólares [3].

1997-Las pérdidas civiles de mayor cuantía debido a una descarga atmosférica se

registraron en los Estados Unidos y fue en un almacén en Denver; los daños al

edifico y su contenido excedieron los 50 millones de dólares [3].

2007 -Oklahoma, Estados Unidos, un gran incendio que provocó el cierre de la

refinería Gary Williams Energy Corp. en Winnewood Oklahoma. El incendio

comenzó cuándo un rayo impacto a un tanque de almacenamiento consumiendo

cincuenta mil barriles de nafta; el rayo perforo la parte superior del tanque, tal como

lo muestra la Imag. 1 [3].

Imag. 1 Muestra la consecuencia del impacto del rayo sobre un tanque de nafta [3].

Page 14: Sistema de puesta a tierra de tanques Con Productos Inflamables

13

2007-Un impacto de rayo golpeo un sistema de desechos de agua salada cerca

de Cresso, como se aprecia en la Imag 2. Él fuego destruyo diez tanques de

agua salada y una pequeña oficina de las Texas Transco Inc. [3].

Imag. 2 Impacto de un rayo sobre la parte superior de un tanque de desechos de agua

salada [3].

A continuación se darán las causas de los accidentes provocados por las descargas

eléctricas atmosféricas, en tanques de almacenamiento de productos inflamables que es

el objetivo de este trabajo [3]:

1. Perforación de los tanques, arco eléctrico en la atmosfera que es un peligro en el

interior del tanque.

2. Arco eléctrico formado entre partes metálicas no equipotenciales en presencia de

atmosferas peligrosas.

3. Arco eléctrico entre los conductores de alimentación o instrumentación y el

sistema de puesta a tierra en presencia de una atmosfera peligrosa (Agujero de

Faraday).

Por estas causas, se justifica que este trabajo este dedicado al estudio de la protección

contra descargas atmosféricas, ya que este problema afecta tanto a la seguridad del

personal, como a la integridad de la instalación.

Page 15: Sistema de puesta a tierra de tanques Con Productos Inflamables

14

CAPITULO I

INTRODUCCIÓN

Page 16: Sistema de puesta a tierra de tanques Con Productos Inflamables

15

1. Introducción.

En este trabajo tratará acerca de los daños producidos por las descargas eléctricas

atmosféricas en los tanques de almacenamiento de combustibles de una forma general,

partiendo de la descripción de las características de las descargas atmosféricas y de los

elementos básicos de protección como son los pararrayos o bayonetas y las redes de

tierra. A lo largo de la historia la industria petrolera ha evidenciado la naturaleza destructiva de

las descargas atmosféricas, cuyos resultados generalmente son incendios de gran

magnitud, ocasionando grandes pérdidas económicas, la destrucción de las instalaciones

como lo son: áreas de almacenamiento, plantas de refinación, etc [5].

Cada año se pierden vidas humanas debido al incendio o explosión de tanques de

almacenamiento; ejemplos de estos es lo que ocurrió en Nigeria en el año de 1990

donde se incendio un tanque que contenía 670,000 barriles de petróleo a causa del

impacto de un rayo, el costo aproximado de este incidente fue de $ 30, 000,000 de

dólares; otro ejemplo es lo que sucedió en la refinería Cilacap en Indonesia, donde un

rayo impacto un tanque de almacenamiento, provocando un gran incendio el cual se

extendió a otros seis tanques; esto tan solo son dos ejemplos de situaciones que se

presentan frecuentemente en diferentes partes del mundo, en promedio entre 12 y 20

tanques son sujetos a descargas cada año [5].

1.1 Tipos de sobretensiones. Se entiende que una sobretensión es la elevación de la tensión que se presenta en algún

punto de una red eléctrica respecto a la tensión eficaz nominal, de fase a fase o de fase a

neutro [2].

Estas se clasifican de acuerdo al siguiente cuadro sinóptico:

-Resonancia y ferroresonancia.

- Efecto ferranti.

-Temporales -Corto circuito.

-Pérdida súbita de carga.

-Conductores abiertos.

Tipos de Sobretensiones

- Maniobra de interruptores.

-Transitorias

-Descargas atmosféricas.

Page 17: Sistema de puesta a tierra de tanques Con Productos Inflamables

16

1.1.1 Sobretensiones de origen atmosférico.

Este tipo de sobre tensiones son las que se han citado en el cuadro sinóptico anterior,

por lo que como se sabe son producidas por la caída de un rayo, a su vez estas se

clasifican en:

1.1.1.1 Sobretensiones conducidas.

Son originadas por la caída de un rayo sobre una línea eléctrica originando impulsos de

sobretensión que se dirigen hacia los extremos de la línea, como lo muestra la Fig. 1.1,

en algunos casos se presentan en instalaciones eléctricas de baja tensión [2].

Fig. 1.1 Tension conducida [2].

1.1.1.2 Sobretensiones inducidas o radiadas.

Son producidas cuando existe una caída indirecta del rayo, como lo muestra la Fig.1.2,

el cual crea un campo magnético de gran longitud que produce sobretensiones en líneas

cercanas a la caída del rayo e inclusive a varios kilómetros de distancia [2].

Fig. 1.2 Sobre tensión inducida o radiada [2].

Page 18: Sistema de puesta a tierra de tanques Con Productos Inflamables

17

1.1.1.3 Sobretensión producida por la toma de tierra.

La caída del rayo al suelo genera una corriente, la cual se propaga, esta propagación

depende en gran medida del tipo de suelo, tal como lo muestra la Fig. 1.3; para aclarar

este punto se pondrá el siguiente ejemplo: Se aprecia la caída de un rayo a tierra y un

animal que se encuentra a 100 m de distancia del impacto, además una construcción que

esta a escasos metros del impacto, si se toma en cuenta que el animal está caminando se

tiene una diferencia de potencial entre dos puntos, estos puntos son las patas del

animal, supóngase que la distancia entre las patas es de 1 m y en estas condiciones se

genera una diferencia de potencial de 500 V entre las patas; así mismo si la corriente

producida por el rayo es de 30 KA y una toma de tierra excelente de 2 Ω, entonces

aplicando la ley de ohm con estos datos se tendra un incremento de tensión de 60 KV

[2].

Fig. 1.3 Sobre tensión por la toma de tierra [2].

1.2 Proceso de carga y descarga de la nube.

Las nubes de una tormenta eléctrica son generalmente de tipo cumulonimbo, esta se

reconoce por su forma de yunque y el color obscuro de su base, como se muestra en la

Fig. 1.4, esta se encuentra a 2 Km de altura con respecto al suelo y la cima a 12 Km. El

desarrollo de la misma está condicionado por la elevación del aire caliente procedente

del suelo; durante esta ascensión, la masa de aire se carga de humedad hasta formar a la

nube [2].

Fig. 1.4 Muestra la formación de nubes de tormenta [2].

Page 19: Sistema de puesta a tierra de tanques Con Productos Inflamables

18

1.2.1 Mecanismo de electrización.

Se origina por las violentas corrientes ascendentes y descendentes que son

características de estas nubes, al tomar una altura determinada se producen gotas de

agua, algunas de ellas se convierten en cristales de hielo por las bajas temperaturas

dentro de la nube; como las corrientes de aire son inestables, estas provocan que las

partículas de agua y hielo choquen entre sí, creando cargas positivas y cargas negativas

[2].

1.2.2 Inicio de la fase activa.

Se genera cuando las cargas de signo opuesto se separan, como se aprecia en la Fig. 1.5;

las cargas positivas compuestas de cristales de hielo se sitúan en la parte superior,

mientras que las cargas negativas que comprenden a las gotas de agua se sitúan en la

parte inferior de la nube, pasado esto la nube entra en una fase activa y los primeros

rayos intranube aparecen [2].

Fig. 1.5 Inicio de electrificación de la nube tormenta e inicio de la fase activa [2].

1.2.3 Madurez de la fase activa.

En esta etapa la nube forma un enorme condensador con el suelo, después de media

hora de formación, se comienzan a generar los rayos intra nube y con descarga a tierra;

las primeras lluvias comienzan aparecer, como se ve en la Fig. 1.6 [2].

Fig. 1.6 Madurez de la nube y la actividad que existe en la nube [2].

Page 20: Sistema de puesta a tierra de tanques Con Productos Inflamables

19

1.2.4 Fin de la fase activa.

En esta última fase la nube disminuye sus dimensiones mientras que las descargas

atmosféricas se intensifican como lo presenta la Fig. 1.7, esto es acompañado por

fuertes precipitaciones de granizo y ráfagas de viento; o también es conocida como la

fase de hundimiento donde la nube descarga varias centenas de millares de agua [2].

Fig. 1.7 Hundimiento de la nube de tormenta o decrecimiento de la actividad de la nube [2].

La teoría descrita con anterioridad es la “Teoría de los cristales de hielo”, en el anexo

se describen las diferentes teorías más aceptadas por la comunidad científica.

1.3 Forma de onda de la corriente del rayo.

Como se sabe, no todas las descargas atmosféricas tienen la misma velocidad; sus

amplitudes y formas varían estadísticamente, esto puede ser visto en la forma de onda

de la corriente de retorno, que depende de la polaridad de la descarga atmosférica. En

los rayos cuya polaridad es negativa, la forma de onda de la segunda descarga es

diferente a la primera, presentando un frente más rápido y una duración más prolongada

[21].

La Fig. 1.8 muestra la corriente de retorno, definida por Anderson y Eriksson, en donde

se puede ver que T10 es el intervalo de tiempo entre el 10% y 90 % de la corriente pico y

T30 es el intervalo de tiempo de entre el 30% y 90% de la corriente [21].

Fig. 1.8 Típica forma de onda de corriente de retorno del rayo [21].

Page 21: Sistema de puesta a tierra de tanques Con Productos Inflamables

20

De una manera más simple se puede utilizar una onda con una forma de onda de doble

rampa, como lo muestra la Fig. 1.9. En este caso la expresión que sigue la corriente de

retorno es la siguiente [21]:

i t = α1t u t − α2 t − tf = i1 t + i2 t (2.1)

𝛼1 =I

tf ; 𝛼 =

2th−tf

2tf th−tf I (2.2)

Dónde:

u (t),u(t − tf) = Funcione escalón unidad.

I= Intensidad pico de la onda de corriente del rayo (A).

tf = Tiempo de frente de la onda de corriente del rayo (seg.).

th= Tiempo al valor medio de la intensidad pico del rayo (seg.).

Fig. 1.9 Onda de rayo en doble rampa.

1.4 Bases teóricas de las protecciones contra descargas eléctricas atmosféricas.

Para la protección contra descargas atmosféricas se conocen dos principios básicos [5].

El principio de la jaula electrostática según Faraday.

El principio de Mástil según Franklin.

Page 22: Sistema de puesta a tierra de tanques Con Productos Inflamables

21

1.4.1 Jaula de Faraday.

El principio de Faraday establece que “El material ó elemento encerrado dentro de

un envolvente de un material conductor conectado a tierra, protege al elemento que está dentro de este material envolvente”, por lo que este queda libre de

interferencias electromagnéticas y de cualquier fenómeno eléctrico, por intenso que sea

tal como se observa en la Fig. 1.10 que muestra a un edificio envuelto por y una malla

de conductores y aterrizado, [5]. El efecto esperado con esta protección, consiste en que

las corrientes causadas por cargas electrostáticas externas, tenderán a circular por la

periferia del material conductor sin producir daño alguno a los elementos que se

encuentran dentro de este espacio [2].

Fig. 1.10 Imagen que muestra el principio de una jaula de Faraday [2].

1.4.2 Mástil de Franklin.

El principio del mástil de Franklin establece que, “La distancia más cercana entre

una carga estática de origen atmosférico residente en las nubes y la superficie terrestre será de manera indudable el punto más alto de una zona geográfica”; bajo

este principio actúa un pararrayos, como el que es mostrado en la Fig. 1.11, el cual

tiene la función de canalizar a tierra las descargas atmosféricas de una forma segura y

sin generar ningún daño al el elemento a proteger [5].

Fig. 1.11 Imagen que muestra un pararrayos [2].

Page 23: Sistema de puesta a tierra de tanques Con Productos Inflamables

22

Recientemente se ha aceptado la clasificación de dos sistemas de protección [5]:

Sistemas Pasivos. Estos sistemas son los que están ubicados con relación al suelo y a la

fuente de carga electrostática atmosférica, provocando una ionización en

la punta de elemento protector, este tipo de elementos serán tratados en

los capítulos subsiguientes con más detalle, además estos se clasifican en

otros tipos como lo son: puntas de descargas convencionales, de punta

múltiple, puntas con toroide, puntas elevadas macizas, hilos de guarda y

elementos semejantes.

Sistemas activos. Son aquellos que generan una carga eléctrica y continuamente están

bombardeando la atmósfera con iones, con esto se pretende repeler o

neutralizar las cargas electrostáticas atmosféricas, en teoría provoca la

cancelación de descargas o minimización de la energía descargada;

durante algún tiempo se construyeron puntas con núcleo radioactivo,

este se utilizaba como una fuente iónica, pero por el riesgo de radiación

que presentaba, el mantenimiento y su potencial efecto contaminador

actualmente están prohibidos; recientemente se han desarrollado

elementos con partes piezoeléctricas, que por la sola agitación de

corrientes de aire crean presiones internas, las cuales generan potenciales

eléctricos, aunado a este efecto generador se aprovechó el principio de

venturi para crear corrientes ascendentes de aire, con lo cual se ha

logrado el bombardeo efectivo a la atmosfera.

Page 24: Sistema de puesta a tierra de tanques Con Productos Inflamables

23

CAPÍTULO II

CONCEPTOS DE UN SISTEMA DE

PROTECCIÓN CONTRA RAYOS

Page 25: Sistema de puesta a tierra de tanques Con Productos Inflamables

24

2. Conceptos de blindaje de equipos e instalaciones.

En este capítulo se describirán los tipos de blindaje que pueden ser utilizados para el

diseño de la protección, describiendo a los hilos guarda como un posible blindaje para

los tanques de almacenamiento, una vez que este tipo de blindaje sea descrito, se

describirán los pararrayos, desde los primeros empleados en la protección contra

descargas atmosféricas, hasta los de última generación; además se describirá la norma

UNE 21.186, la cual rige al cálculo, pruebas y instalación de los mismos.

2.1 Hilos de guarda.

Cuando se habla de hilos de guarda, se refiere al nivel de protección de un sistema

eléctrico de potencia contra las descargas eléctricas atmosféricas; estos hilos pueden ser

de acero, son conectados a las puntas superiores de las torres de transmisión y

estructuras de las subestaciones, quedando por encima de los conductores de fase, es

decir son hilos soportados paralelamente a los conductores activos de la línea; dichos

hilos sirven como una pantalla protectora impidiendo que los rayos incidan

directamente sobre las fases y los equipos que estén dentro de su zona de protección

[33].

2.2 Sistemas de pararrayos.

Los rayos ocurren con diferentes intensidades, por lo que el sistema de pararrayos

deberá proteger contra su efecto y este deberá ser diseñado tomando en cuenta los rayos

promedio sobre un área en específico. Las descargas no pueden ser detenidas, pero la

energía puede ser desviada en una forma segura y controlada [4].

Un sistema de protección contra descargas atmosféricas, debe [4]:

Capturar el rayo en la zona escogida para tal propósito.

Conducir la energía de la descarga a tierra, mediante un sistema de cables

conductores de baja impedancia, transfiriendo la descarga hacia tierra.

Disipar la energía en un sistema de terminales (electrodos) en tierra.

Como la tierra no tiene una resistividad uniforme en todos los puntos, en un sistema de

electrodos múltiples conectados entre sí, a manera de malla, existe la probabilidad de

que exista una diferencia de potencial entre algunos de sus puntos aterrizados [4].

El problema de la diferencia de potencial que se presenta entre electrodos se complica

aún más cuando una nube cargada pasa por encima de la malla. Además, una descarga

eléctrica que caiga cerca, causará grandes corrientes en la tierra, al fluir esta corriente

por tierra, causará una diferencia de potencial entre los electrodos y esta diferencia de

potencial, a su vez, causará que fluya corriente por los conductores de la malla. La

inductancia de los conductores de cobre usados para tierras es de aproximadamente de

1.64 mH/m, por lo que a la frecuencia de los rayos, la impedancia debida a la

Page 26: Sistema de puesta a tierra de tanques Con Productos Inflamables

25

inductancia es muchas veces mayor que la impedancia debida a la resistencia del

conductor. Además, estas señales de alta frecuencia no seguirán nunca una vuelta muy

cerrada, que está presente en el conductor, porque cada doblez incrementa la reactancia

inductiva. De ahí, que todos los cables de conexión a tierra de pararrayos deben tener

curvas generosas en lugar de esquinas cerradas. Por ello, se recomiendan curvas con

radio de unos 20 cm, y conductores múltiples conectados en paralelo a tierra [4].

En México existen algunas normas de cumplimiento obligatorio, como la NRF-070 de

PEMEX y la NMX-J-549-ANCE, las cuales establecen que se debe de contar con

protección contra descargas eléctricas atmosféricas, para algunos tipos de edificaciones

principalmente donde existen materiales inflamables o explosivos, sin embargo estas

normas no establecen un método en especifico así que queda ambigua la aplicación de

un principio técnico. Cabe resaltar que en otros países con un grado de desarrollo

tecnológico más avanzado si existe una reglamentación especifica de cumplimiento

obligatorio [5].

Es opcional el emplear uno u otro método de protección, sin embargo, por seguridad es

recomendable que cuando se instale un sistema de protección contra descargas

eléctricas atmosféricas la selección no se basa en el costo de dichos sistemas (pararrayos

y sistema de puesta a tierra) [5].

Por una cercanía geográfica que México tiene con Estados Unidos de Norteamérica

(U.S.A), es fácil acceder a sus normatividades y una de ellas está relacionada con el

estudio de este trabajo, es la publicación 780 de la N.F.P.A (National Fire Protection

Association) denominada “Lightining Protection Code”. Esta norma técnica fue

desarrollada desde 1904 y periódicamente actualizada, la cual aplica de manera

simultánea los dos principios conocidos (Franklin y Faraday), estableciendo el uso de

puntas de descarga para atracción de cargas electrostáticas y al mismo tiempo obliga a

que se construya una malla formada de conductores en todo el contorno del elemento a

proteger, también estableciendo los calibres mínimos de estos conductores, el

espaciamiento mínimo entre ellos y la característica de los electrodos para el drene a

tierra. Por lo que podemos decir que la normatividad americana se basa en los métodos

pasivos, así como la combinación de principios de Franklin y de Faraday [5].

2.3 Definición de un sistema de pararrayos.

Un pararrayos es un instrumento cuyo objetivo es atraer al rayo y canalizar la descarga

eléctrica hacia tierra, este gran invento fue creado por Benjamín Franklin en 1753

mientras efectuaba una serie de experimentos sobre la propiedad que tienen las puntas

agudas, por lo que el primer pararrayos se conoce como "Pararrayos Franklin" en un

homenaje a su inventor [10].

Los sistemas de protección contra descargas atmosféricas (SPDA), son fundamentales

para la seguridad de estructuras, además de que actúa indirectamente en la protección de

las personas [9].

Esta protección es reglamentada por varias normas, una de ellas es la NORMA UNE 21.186 y la NFC-17 -102 que entre otras cosas se enfoca en la calidad de los materiales

Page 27: Sistema de puesta a tierra de tanques Con Productos Inflamables

26

empleados en su instalación, además de que prohíben metales ferrosos galvanizados

electrolíticamente. En el caso de que este sistema este expuesto a ambientes agresivos,

las normas exigen la utilización de metales nobles, descartando el uso del aluminio, en

tanto que puede ser utilizado el cobre, esto por ser durable y resistente a la humedad

[10].

Definido lo anterior, se citaran las características más importantes que deben cumplir

estos sistemas [10]:

La terminal aérea de un pararrayos debe superar como mínimo dos metros la

máxima cota de la estructura a proteger.

El radio de cobertura será determinado por la longitud resultante desde la

ubicación de la terminal aérea de capitación hasta el punto más desfavorable de

la estructura a proteger, cumpliendo con margen de seguridad de +10% y en

ningún caso el radio de protección debe superar 100 m.

Las bajantes de tierra serán lo más verticalmente posible, no efectuando curvas

con radios no inferiores a 20 cm, ni con cambios de dirección con ángulos a 90º,

por recomendación se hace referencia tener una segunda bajada a tierra para

mejorar el índice de seguridad de la instalación.

La toma de tierra juega un valor importante en la instalación, ya que su

resistencia óhmica debe ser lo más baja posible.

El mantenimiento de un sistema de protección contra el rayo debe consistir en una

revisión periódica anual e inmediatamente después de que se tenga constancia de haber

recibido una descarga eléctrica atmosférica. No se debe de olvidar, que estos trabajos

periódicos conservan en perfecto estado la instalación y evita costos mayores de

reparación [10].

2.4 Tipos de pararrayos. En la actualidad existen diversos tipos de pararrayos cada uno con sus características

propias, su modo de funcionamiento así como su uso, en este punto se detallaran cuales

fueron los primeros sistemas de protección y describirán los que actualmente son

empleados [10].

2.4.1Pararrayos tipo Franklin.

Es conocido como el primer pararrayos, está compuesto por una barra de hierro

coronada con una punta de cobre o de platino colocada en la parte más alta de la

estructura a proteger, este se muestra en la Fig. 2.1; la barra esta unida mediante un

cable conectado a tierra [10].

Page 28: Sistema de puesta a tierra de tanques Con Productos Inflamables

27

El principio de protección de este pararrayos es el de proteger una zona, las cual es igual

a el radio de la altura del pararrayos, esta altura se toma desde el nivel del suelo hasta la

punta [10].

Su principio de funcionamiento consiste en que durante la tormenta se generan campos

eléctricos de alta tensión entre nube y tierra, estos campos producen cargas eléctricas,

las cuales se concentran en las puntas más predominantes de este pararrayos, alrededor

de la punta o electrodo aparece una ionización natural llamado efecto corona, resultado

de la transferencia de energía, este primer pararrayos es el mostrado en la Fig. 2.1; este

fenómeno es el principio de excitación para poder trazar un canal conductor que

facilitara la descarga del rayo.

Fig. 2.1 Pararrayos tipo Franklin [11].

2.4.2 Pararrayos radioactivo.

A diferencia del pararrayos tipo Franklin descrito anteriormente, el pararrayos

radioactivo cubre un radio de protección de más de 100 m, como el mostrado en la Fig.

2.2, puesto que esta adicionado con sales radioactivas; de ahí que se nombrara de esta

manera; el único inconveniente que se encontró en este tipo de pararrayos era que

resultaba nocivo para la salud ya que en 1962 los científicos Muller Hillerban y H.

Baatz, realizaron estudios a estos pararrayos y llegando a la conclusión, que en realidad

no eran capaces de abarcar un radio de seguridad de más de 100 m, además de que

representaban un riesgo de radiación; por esta razón a partir de 1985 se inicio el

desmontaje de los mismos [12].

Fig. 2.2 Pararrayos radioactivo [11].

Page 29: Sistema de puesta a tierra de tanques Con Productos Inflamables

28

2.4.3 Pararrayos con dispositivo de cebado (PDC).

Después del rotundo fracaso de los pararrayos radioactivos, la comunidad científica se

aboco al estudio de nuevas formas de protección contra las descargas eléctricas

atmosféricas, una de la tecnologías desarrolladas a finales de los ochenta fue la de

pararrayos con dispositivos que emitían un trazador ascendente, llamándolos pararrayos

con dispositivo de cebado o PDC, mostrado en la Fig. 2.3 [12].

Este cuenta con un dispositivo de cebado, el cual genera un campo eléctrico artificial

capaz de generar un trazador ascendente que es lanzado al exterior en busca de la

descarga eléctrica atmosférica para atraerlo y derivarlo a tierra de manera segura; su

fabricación, instalación y mantenimiento están regidos por la UNE 21-186 y la NFC 17-

102, entre otras normas internacionales [12].

Las principales caracteristicas de el PDC, se citan a continuacion[13]:

Eje central y conjunto deflector fabricados en acero inoxidable.

Conjunto excitador: resina epoxi.

100% de eficacia en descarga.

Nivel de protección clasificado de muy alto.

Garantía de continuidad eléctrica. No ofrece resistencia al paso de la

descarga.

Conserva todas sus propiedades técnicas iníciales después de cada descarga.

Al no incorporar ningún elemento electrónico no es fundible.

No precisa de fuente de alimentación externa.

Fig. 2.3 Pararrayos tipo CTS [13].

Los pararrayos PDC a su vez se subdividen en los siguientes [12]:

Pararrayos Piezoeléctricos.

Pararrayos Electrónicos

Pararrayos PDC puros o mecánicos.

Page 30: Sistema de puesta a tierra de tanques Con Productos Inflamables

29

2.4.3.1 Pararrayos piezoeléctricos.

Estos pararrayos utilizan fuentes exteriores para producir el campo eléctrico, estas

fuentes pueden ser paneles solares, baterías o cristales de cuarzo; el único inconveniente

radica en que al colapsar la fuente exterior el pararrayos piezoeléctrico deja de activarse

y por consiguiente deja de funcionar.

2.4.3.2 Pararrayos electrónicos.

El dispositivo de cebado está compuesto por elementos electrónicos, además de que no

necesita de una fuente exterior para activar su funcionamiento, ya que toma la

alimentación de las cargas eléctricas de la propia nube. El único inconveniente radica en

que cuando se produzca la descarga eléctrica atmosférica sobre este, esta deteriore el

equipo electrónico.

2.4.3.3 Pararrayos PDC puros o mecánicos.

Su dispositivo de cebado es forjado a través de las propias formas geométricas de su

construcción de acero y la alimentación eléctrica proviene de las propias cargas

eléctricas que generan las nubes. Los pararrayos del tipo PDC para ser considerados

como tales deben contar mínimamente con un certificado de evaluación otorgado por

laboratorio de alta tensión acreditado y los resultados deben acreditar su radio de

protección.

2.4.4 Pararrayos desionisadores de carga electrostática (CTS).

Este tipo de pararrayos incorpora un sistema de transferencia de carga, y se caracteriza

por facilitar la transferencia de la carga electrostática entre la nube y tierra antes de que

la descarga atmosférica se complete, esto se logra anulando el fenómeno de ionización o

efecto corona de la tierra. El cabezal de este pararrayos está constituido por un par de

electrodos de aluminio separados por un aislante dieléctrico, todo estos elementos

soportado por un pequeño mástil de acero inoxidable [13].

Page 31: Sistema de puesta a tierra de tanques Con Productos Inflamables

30

2.4.5 Pararrayos PDC-E.

Este tipo de pararrayos es el resultado de la experiencia acumulada en el diseño y

utilización de dispositivos de cebado como se muestra en la Fig. 2.5, ya que la emisión

ascendente de partículas ionizantes producidas por este pararrayos mediante un

dispositivo de cebado le permite capturar la descarga eléctrica atmosférica con mayor

rapidez y a una mayor altura, con lo que es posible aumentar el radio de protección [14].

Fig. 2.5 Pararrayos PDC-E [14].

2.4.6 Pararrayos stream.

A diferencia del pararrayos PDC-E mostrado en la Fig. 2.6, el pararrayos stream

contiene un dispositivo de cebado de última generación, que reduce el tiempo de

cebado, con esta reducción de cebado se obtiene un aumento en la velocidad y

efectividad en la captura de la descarga eléctrica atmosférica, por consecuencia su radio

de protección se amplía [14].

Su funcionamiento es activado cuando una tormenta eléctrica aumenta la intensidad el

campo eléctrico que se forma entre nube-tierra, cuando esto sucede actúa el pararrayos

stream acumulando la carga que se produce antes de la descarga atmosférica, esta

energía es liberada en forma de impulsos de alta tensión que ioniza el aire que se

encuentra alrededor del pararrayos, de esta forma se crea un trazador que dirige la

descarga hacia el pararrayos [14].

Este dispositivo de cebado, es uno de los más eficientes que se encuentra hoy en día, ya

que como se ha explicado el dispositivo de cebado produce descargas que ionizan el aire

para la captura de la descarga, pero a diferencia de los demás dispositivos, este solo

actúa en la presencia de una descarga atmosférica y no hace descargas en falso, en

resumen actúa solo cuando el impacto de la descarga es directo [14]. Por último se debe

agregar que este pararrayos no ofrece resistencia alguna al paso de la descarga y

conserva todas sus propiedades técnicas iníciales después de cada impacto eléctrico

[14].

Page 32: Sistema de puesta a tierra de tanques Con Productos Inflamables

31

Fig. 2.6 Pararrayos Stream [14].

2.5 Sistemas no convencionales.

Están dividíos en dos clases:

Una clase se agrupa en esquemas de protección cuyo objetivo es el evitar la formación

del rayo sobre la estructura o elemento a proteger, este tipo de protección actúa

modificando las condiciones eléctricas de la nube o de la guía escalonada, de esta

manera funcionan como “Eliminadores de rayos”. Son comercializados con el nombre

de DAS (Dissipation Array System – Sistemas de Disipación) o también conocidos

con el nombre de CTS (Charge Transfer System-Sistema de Transferencia de Carga) [16].

Otra clase se basa en captores tipo pararrayos verticales los cuales están equipados con

un dispositivo que tiene la función de aumentar el área de protección, otra forma con los

que son conocidos estos pararrayos, son con el nombre de ESE (Early Streamer Emission – Emision temprana de Trazador), en nuestro país son conocidos como

PDC (Pararrayos con Dispositivo de Cebado), en ocasiones estos vienen con el nombre

de PDA siglas en francés, debido a que en su mayoría estos dispositivos se han

desarrollado en Francia [16].

Las propuestas antes vistas resultan atractivas para el diseño y su instalación, en

particular los pararrayos PDC dan una protección efectiva aun cuando solo se unos

pocos pararrayos de baja altura, simplificando el estudio y el diseño de la protección,

particularmente para estructuras ya existentes y no protegidas. En lo subsiguiente se

presentara para ambas clases el funcionamiento, un análisis de la teoría y resultados de

estudios, experimentos y observaciones realizados por usuarios y por la comunidad

científica [16].

Page 33: Sistema de puesta a tierra de tanques Con Productos Inflamables

32

2.6 Sistemas de transferencia de carga (CTS). Su función es la de modificar las condiciones eléctricas de la atmosfera sobre y en las

proximidades de la zona a proteger de manera de evitar la descarga atmosférica o por lo

menos reducir la probabilidad de su formación. Las descripciones de su funcionamiento

dadas por los fabricantes se basan en el efecto corona, sin olvidar que es producido por

irregularidades en el terreno y estructuras bajo un campo eléctrico, como el que es

producido por una nube durante una tormenta eléctrica; su construcción emplea

conductores de bajo diámetro, que van del orden de algunos milímetros cuyo extremo

puede considerarse una punta, esto conductores son comunes en todas las

construcciones propuestas anteriormente [16].

En resumen, se dice que [16]:

Los sistemas de transferencia de carga o dispositivos no son capaces de evitar

los rayos ni de desviarlos de las estructuras o sistemas a proteger.

Con estos pararrayos no es posible neutralizar la nube ni la guía escalonada.

Teóricamente pueden crear una disminución de los rayos iniciados desde la

estructura (tierra-nube).

Es totalmente inefectivo contra las descargas nube –tierra.

2.7 Dispositivos ESE (Early Streamer Emisión- Emisión Adelantada del Trazador).

Este tipo de pararrayos también es conocido como PDC (Pararrayo con Dispositivo de Cebado), PDA (Paratonerre à Dispositif d´Amorçage) y/o también como pararrayos

activos, aunque internacionalmente se les conoce como tipo ESE en nuestro caso los

nombraremos PDC [16]. Este tipo de pararrayos difiere de los demás ya que como se ha

visto anteriormente entre sus características principales, cuenta con puntas especiales

capaces de generar un trazador ascendente antes que suceda la descarga a diferencia de

los pararrayos convencionales, este trazador ascendente encontrara la guía escalonada a

una distancia considerable, provocando que el área de protección aumente [16].

Su mecanismo de protección es el siguiente:

Cuando al acercarse la guía escalonada de la descarga, la punta del dispositivo PDC

inicia un trazador de manera ascendente en un cierto tiempo Δt en el orden de decenas

de microsegundos, esta afirmación implica que este trazador, que consiste en una

descarga capaz de propagarse con un campo eléctrico mucho menor que en el caso de

una punta, en la tabla 2.1 se describe brevemente los niveles de protección de este

pararrayos, como podemos observar nos proporciona el radio de la esfera o radio de

protección, su corriente de pico, el tamaño de la malla (sistema de puesta a tierra) y por

último la probabilidad de intercepción del rayo [16].

Page 34: Sistema de puesta a tierra de tanques Con Productos Inflamables

33

Tabla 2.1 Niveles de protección establecidos en la norma CEI 62305-3 [14].

Nivel de protección

Distancia de impacto/radio

esfera.

(m)

Corriente de pico. ( Norma

CEI )

(KA)

Tamaño de malla para superficies

planas.

(m)

Probabilidad de

intercepción del rayo.

(%)

I 20 2.9 5 x 5 99

II 30 5.4 10 x1 0 97

III 45 10.1 15 x15 91

IV 60 15.7 20 x 20 84

Una vez que se ha hecho una pequeña comparación entre los tipos de pararrayos, es

posible determinar, que los pararrayos PDC son los más efectivos para emplear los

como un blindaje efectivo.

2.8 Estudio previo de la protección contra el rayo.

Para el diseño se deberá de realizar un estudio previo, en el cual se debe elegir el nivel

de protección, el emplazamiento del o los PDC, el trazado de o de las bajantes, la

ubicación y el tipo de tomas de tierra [26].

Se recomienda tener en cuenta la estructura desde el momento del diseño del sistema de

protección contra el rayo, ya que de lo contrario su eficacia puede reducirse [26].

El estudio previo consta de dos partes [26]:

1. Estudio del riesgo de la caída de rayos y elección del nivel de protección.

2. Emplazamiento de los diferentes elementos de la instalación.

El conjunto de información que compondrá a este estudio, será un documento

descriptivo que contendrá lo siguiente [26]:

Las dimensiones de la estructura (edificios, tanques, etc.).

La posición geográfica de la estructura: aislada, situada en la cima de una colina

o en medio de otras construcciones que sean más altas, de la misma altura o más

bajas.

Page 35: Sistema de puesta a tierra de tanques Con Productos Inflamables

34

La frecuencia de la ocupación de la estructura, englobando si los ocupantes están

en movilidad o no.

El riesgo de pánico.

La dificultad del acceso.

La continuidad del servicio.

El contenido de la estructura: con presencia de seres humanos, de animales,

materiales inflamables, equipos sensibles como ordenadores, equipos

electrónicos, etc.

Los obstáculos cercanos que pudieran influir en el trayecto de la descarga, por

ejemplo líneas aéreas, vallas metálicas, etc.

La naturaleza del ambiente, referido a que se trate de un ambiente salino, fabrica

petroquímica, cementeras, etc.

2.8.1 Determinación del punto de impacto.

El rayo surge en el seno de la nube de tormenta, y en primera instancia, antes de que

surja la descarga se genera un trazador, el cual será una especie de camino que seguirá

la descarga, este trazador es conocido como descendente el cual amplificara el campo

eléctrico del suelo [26].

Para que surja una descarga se necesita la presencia de dos trazadores, uno descendente

y un ascendente, este último surge a raíz de la presencia de una estructura o un objeto

superior al nivel del suelo, en nuestro caso los PDC generan un trazador ascendente el

cual se unirá al descendente de la nube, de esta manera la descarga será dirigida hacia el

pararrayos, tal como lo muestra la Fig. 2.7 [26].

Fig. 2.7. Proceso de descarga hacia el PDC [26].

Page 36: Sistema de puesta a tierra de tanques Con Productos Inflamables

35

2.8.2 Velocidad de propagación de los trazadores o líderes.

Recientes experimentos realizados, muestran que las velocidades medias de los

trazadores (ascendentes y descendentes) son comparables durante la fase de

aproximación; puesto que la relación entre las velocidades de dichos trazadores es entre

0.9 y 1.1 m/μs [26]. Los PDC tienen la ventaja de obtener una ganancia, puesto que

esto se representa en longitud, es decir el PDC es capaz de generar un trazador con una

mayor longitud que el trazador de la nube y de esta manera se tiene una mayor certeza

de que la descarga será conducida hacia el PDC [26].

La ganancia de longitud del trazador ascendente ∆L es determinada por [26]:

∆L = v ∗ ∆t (2.2)

Donde:

∆L= Longitud del trazador ascendente (m).

V= Velocidad común, que por lo general es de 1 m/μs.

∆t = Tiempo del trazador (μs).

2.8.3 Zona de protección.

Está delimitada por los radios de protección correspondientes a las diferentes alturas (h)

consideradas y cuyo eje es el mismo que el del PDC, como lo muestra la Fig. 2.8 que

muestra un edificio, el cual está siendo protegido por un PDC, además de que está

formado por diferentes alturas y por lo tanto con diferentes radios de protección, así que

todo este conjunto es conocido como zona de protección [26].

Fig. 2.8 Radios de protección [26].

Page 37: Sistema de puesta a tierra de tanques Con Productos Inflamables

36

Donde:

hn = Es la altura de la punta del PDC, con relación al plano horizontal que pasa por el

punto más alejado perteneciente al elemento a proteger (m).

Rpn = Es el radio de protección del PDC, para cada altura considerada (m).

2.8.4 Radio de protección. Este depende de la altura (h) del PDC en relación con la superficie a proteger, de su

avance del cebado y del nivel de protección elegido, para calcular este radio de

protección se utiliza la siguiente fórmula, la cual es apreciada de una manera grafica en

la Fig. 2.9 [26]:

Rp = 2Dh − h2 + ∆L 2D + ∆L (2.3)

En donde:

𝑅𝑝= Radio de protección (m).

h = Altura de la punta del PDC en relación a plano horizontal que pasa por el vértice del

elemento a proteger (m).

D= Nivel de protección: 20 m para el nivel I, 45 m para el nivel II, 60 m para el nivel

III.

Nota: también es conocida como distancia de cebado, y es calculada por la siguiente

ecuación:

D = 10 x I2/3 (2.4)

Donde: I es la corriente pico de retorno.

∆L= Distancia de captación del rayo (Es decir la distancia recorrida por los iones hacia

el rayo)

∆Lm = Vm/μs ∗ ∆tμs

Donde ∆tμs es el avance en el cebado obtenido en las pruebas de evaluación [26].

Nota: La formula anterior es aplicable para alturas mayores a 5 m.

Fig. 2.9 Radio de protección de un PDC [26].

Page 38: Sistema de puesta a tierra de tanques Con Productos Inflamables

37

Entendiendo los puntos anteriores se puede decir que es esencial tener en cuenta estos

factores ya que el tipo de estructura, nos determinara que nivel de protección es el más

esencial para realizar una evaluación de riesgo.

2.9 Guía de evaluación del riesgo de impacto de rayo y selección

del nivel de protección.

La guía de evaluación de riesgo de impacto permite efectuar un estudio, para evaluar el

riesgo debido a la caída del rayo, además de determinar la protección más adecuada y el

nivel de protección requerido [26].

Existen numerosos casos donde la protección contra el rayo es evidente como los son

[26]:

Cuando se encuentran agrupaciones numerosas de personas.

Necesidades de continuidad de los servicios públicos o de producción.

Zonas de gran necesidad de impacto.

Estructuras muy altas o aisladas.

Estructuras que contengan materiales explosivos o inflamables.

La situación de la estructura dentro de su entorno y su altura será considerada para el

cálculo de riesgo de exposición [26].

En algunos casos los factores no podrán ser evaluados, por ejemplo el deseo de evitar el

riesgo para la vida o de proveer una protección completa [26].

La selección del nivel de protección se basa en la frecuencia de impactos de rayo 𝐍𝐝 , o prevista sobre la estructura o la zona a proteger y la frecuencia anual aceptable de

rayos 𝐍𝐜 establecida para esa zona [26].

Page 39: Sistema de puesta a tierra de tanques Con Productos Inflamables

38

La tabla 2.2 describe los efectos de la descarga en algunas estructuras [26]:

Tabla 2.2 Efectos del rayo en diferentes estructuras [26].

Clasificación de las estructuras.

Tipo de estructura.

Efectos del rayo.

Estructuras Comunes

Granja

Perforación de las

instalaciones eléctricas,

incendio y daños

materiales que se limitan

normalmente a los objetos

próximos al punto de

impacto ó de paso de la

descarga.

Teatros, Escuelas, Grandes

superficies, Áreas

deportivas.

Riesgo de incendio y de

chispas peligrosas.

Riesgo de corte de

corriente: muerte del

ganado debido a la pérdida

de control de ventilación y

de la distribución de los

alimentos; riesgo de

tensión de paso.

Teatros, Escuelas, Grandes

superficies, Áreas

deportivas.

Riesgo de pánico y de fallo

de las alarmas de incendio,

causando retraso en la

lucha contra el fuego.

Bancos, Compañías de

seguros, Sociedades

comerciales, Centros de

Salud.

Como, los anteriores, más

problemas con pacientes de

cuidados intensivos y

dificultad de auxilio en las

personas impedidas.

Industrias.

Efectos adicionales

dependiendo del contenido

de las fábricas.

Museos.

Perdidas irremplazables de

patrimonio.

Esta guía propone una evaluación, tomando en cuenta el impacto del rayo y los

siguientes factores [26]:

Entorno del edificio.

Naturaleza de la estructura o del edifico.

Valor de su contenido.

Ocupación humana y riesgo de pánico.

Consecuencia que tendrán sobre el entorno de los daños del edifico.

Page 40: Sistema de puesta a tierra de tanques Con Productos Inflamables

39

2.9.1 Determinación de Frecuencia de impactos de rayo (𝐍𝐝) y frecuencia aceptable de rayos (𝐍𝐜).

La densidad de impactos de rayo sobre el terreno (número de rayos por Km2), se

determina mediante la utilización del nivel ceráunico local Nk : Ng = 0.02Nk1.67 , el cual

se obtendrá mediante la tabla 2.3 [26].

Tabla. 2.3 Densidad de caída de rayos por 𝐊𝐦𝟐 [26].

Nk/año

5 10 15 20 25 30 35 40 45

Ng/Km2 ∗ año

0.3 0.9 1.8 3.0 4.3 5.8 7.6 9.5 11.5

La frecuencia aceptable de rayos (Nd) de impactos directos de rayo sobre una

estructura se evalúa mediante la siguiente ecuación [26]:

Nd = Ng ∗ 1.1 ∗ Ae ∗ C1 ∗ 10−6/año (2.5)

Dónde:

Ng= Es la densidad anual media de impactos de rayos en la región donde está situada la

estructura.

1.1= Es el coeficiente de seguridad ligado a la evaluación de impactos.

Ae= Es la superficie de captura equivalente a la estructura aislada (m2).

C1= Coeficiente relacionado con el entorno.

Una vez establecido esto, se determina que la superficie de captura equivalente Ae es la

superficie comprendida entre las líneas obtenidas por la intersección entre la superficie

del suelo y una línea de pendiente 1:3 que pasa por el punto más alto de la estructura y

de la vuelta a esta [26].

Por ejemplos si se trata de una estructura totalmente rectangular, con una longitud L,

amplitud l y una altura H, la superficie de captura sería [26]:

Ae = L l + 6H L + 1 9πH2 (2.6)

Page 41: Sistema de puesta a tierra de tanques Con Productos Inflamables

40

Si en dado caso la estructura a proteger está situada cerca de otras estructuras, está

aislada o rodeada de estructuras más altas o más bajas, se tomara el coeficiente

relacionado con el entorno tomado de la tabla 2.4 [26].

Tabla. 2.4 Coeficiente 𝐂𝟏 [26].

Situación de la Estructura. 𝐂𝟏

Estructura situada en un espacio donde hay otras estructuras o

arboles de la misma altura o más altos.

0.5

Estructura rodeada de estructuras más bajas. 0.75

Estructura aislada. 1

Estructura aislada situada sobre una colina o promontorio. 2

Los siguientes puntos situados deben tomarse en cuenta, como una observación [26]:

Cuando la superficie de captura de una estructura cubre en su totalidad a otra

estructura, esta última no se tomara en cuenta.

Cuando existen varias estructuras, se tomara en cuenta una superficie de captura

común, correspondiente a una sola superficie de captura [26].

En seguida se dan algunos ejemplos para el cálculo de la superficie de captura según la

forma de la estructura.

1. Para un edificio rectangular la superficie de captura es, como lo muestra la Fig.

2.10 :

Ae = L(l)6H L + 1 + 9πH2 (2.7)

Donde:

Ae= Área de captura.

L= Largo de la estructura.

H= Altura de la estructura.

Fig. 2.10 Estructura rectangular y sus dimensiones.

Page 42: Sistema de puesta a tierra de tanques Con Productos Inflamables

41

2. En el caso de que la estructura tenga un aparte prominente, como lo muestran la

Fig. 2.11 y la Fig. 2.12.

Ae = 9πH2 (2.7)

Donde:

Ae= Área de captura.

H= Altura de la estructura.

Fig. 2.11 Estructura rectangular y sus dimensiones con una parte prominente.

Fig. 2.12 Estructura con un aparte prominente y sus dimensiones.

Page 43: Sistema de puesta a tierra de tanques Con Productos Inflamables

42

2.9.2 Frecuencia aceptable de rayos (𝐍𝐜) sobre una estructura.

Los valores de Nc , son estimados a través del análisis de riesgo de daños teniendo en

cuenta los siguientes factores [26]:

El tipo de construcción.

El contenido de la estructura.

La ocupación de la estructura.

Las consecuencias sobre el terreno.

Con los puntos citados anteriormente, estos cuatro factores deben ser determinados por

los coeficientes C2 , C3, C4 y C5 , los cuales son evaluados con las tablas 2.5, 2.6, 2.7 y

2.8 [26].

Podemos definir a C como [26]:

C = C2 ∗ C3 ∗ C4 ∗ C5 (2.8)

Nc = 3∗10−3

C (2.9)

Tabla. 2.5 Coeficiente de estructura 𝐂𝟐 [26].

Estructura.

Metal. Comun. Inflamable.

Metal

0.5 1 2

Comun

1 1 2.5

Infalamble

2 2.5 3

Tabla. 2.6 Contenido de estructura 𝐂𝟑 [26].

Contenido de la estructura. 𝐂𝟑

Sin valor o no inflamable. 0.5

Valor común o normalmente inflamable 2

Gran valor o particularmente inflamable. 5

Valor excepcional, irremplazable o muy inflamable o muy

inflamable o explosivo.

10

Page 44: Sistema de puesta a tierra de tanques Con Productos Inflamables

43

Tabla 2.7 Ocupación de la Estructura 𝐂𝟒 [26].

Tabla 2.8 Consecuencia sobre el entorno (𝐂𝟓) [26].

Consecuencia sobre el entorno. 𝐂𝟓

Sin necesidad de continuidad en el

servicio y alguna consecuencia sobre el

entorno.

1

Necesidad de continuidad en el servicio y

alguna consecuencia sobre el entorno.

5

Consecuencia para el entorno. 10

2.10 Método de selección del nivel de protección.

Para seleccionar el nivel de protección se debe comparar el valor de frecuencia

aceptable de rayos Nc con el valor de frecuencia esperada de rayos sobre la estructura

Nd ; esta comparación permite decidir si es necesario emplear un sistema de protección

contra el rayo, y si lo es, que nivel de protección es necesario emplear, por ejemplo

[26]:

Si Nd ≤ Nc , el sistema de protección no es necesario.

Si Nd ≥ Nc , debe ser instalado un sistema de protección y además que nivel de

protección es necesario implementar, según la tabla 2.9.

Ocupación de la estructura. 𝐂𝟒

Sin ocupación alguna. 0.5

Ocupada normalmente. 3

De difícil evacuación o riesgo de pánico. 7

Page 45: Sistema de puesta a tierra de tanques Con Productos Inflamables

44

En la tabla 2.9 se muestra los pasos a seguir para determinar si preciso efectuar el

sistema de protección [26].

Tabla 2.9 Determinación de la necesidad y el nivel de protección [26].

Entradas de datos y formulas.

Cálculos.

Resultados.

Superficie de captura equivalente:

Ae = L(l)6H L + 1 + 9πH2

(En caso de un volumen paralepipédo)

L=

l=

H=

H2=

A e

Frecuencia establecida de impactos

directos sobre una estructura.

Nd = Ng ∗ 1.1 ∗ Ae ∗ C1 ∗ 10−6/año

N g=

Ac =

C1 =

N d

Frecuencia establecida de impactos

sobre una estructura.

C = C2 ∗ C3 ∗ C4 ∗ C5

Nc = 3 ∗ 10−3

C

C 2=

C3 =

C4 =

N c

Si Nd ≤ Nc; PROTECCIÓN OPCIONAL

Si Nd > Nc , PROTECCIÓN NECESARIA.

Determinar el nivel de protección requerido, calculando la eficiencia E= 1 − Nc

Nc

La tabla 2.10 muestra la comparación de la eficiencia calculada como lo estipula la norma

UNE 21.186.

Recordando que la eficiencia se calcula con la siguiente ecuación:

E = 1 − Nc

Nd (2.10)

Donde:

E= Eficiencia calculada.

Nc = Frecuencia establecida de impactos sobre una estructura.

Nd = Frecuencia establecida de impactos directos sobre una estructura.

Page 46: Sistema de puesta a tierra de tanques Con Productos Inflamables

45

Tabla 2.10 Determinación del nivel de protección [26].

E

(Eficiencia calculada).

Nivel de protección correspondiente.

I (KA)

Corriente de cresta

máxima.

D (m)

Distancia de cebado.

E > 0.98

Nivel I, más medidas complementarias.

-

-

0.95 < E ≤ 0.98

Nivel I

2.8

20

0.80 < E ≤ 0.95

Nivel II

9.5

45

0 < E ≤ 0.80

Nivel III

14.7

60

Descrito lo anterior, se debe de especificar a qué se refiere el nivel de protección; este es

el grado de protección con el que debe contar la estructura, es decir que grado de

seguridad se debe emplear.

Nivel I: Es el nivel de máxima seguridad, se recomienda en zonas con alto número de

impactos por año, zonas aisladas, etc.

Nivel II: Se considera de alta seguridad, se recomienda para la protección de estructuras

con una media densidad de impactos.

Nivel III: Es considerado como un nivel de protección estándar, y es empleado en

zonas con un bajo índice de impactos.

Page 47: Sistema de puesta a tierra de tanques Con Productos Inflamables

46

Todo lo establecido en puntos anteriores, conlleva al mapa ceráunico, que es el punto de

partida, este mapa fue implementado hasta el final para que se pudiese comprender

como es que, es utilizada la información de la densidad de las caídas de rayos en la

republica mexicana, tal como lo muestra la Fig. 2.13 [26].

Fig. 2.13 Densidad de impactos de rayo, Ng , (impactos/año,Km2 )

Page 48: Sistema de puesta a tierra de tanques Con Productos Inflamables

47

CAPÍTULO III

PRINCIPIOS y FUNDAMENTOS DE UN SISTEMA DE PUESTA A

TIERRA

Page 49: Sistema de puesta a tierra de tanques Con Productos Inflamables

48

3. Principios y fundamentos de un sistema de puesta a tierra.

El vertiginoso desarrollo de la electricidad y la electrónica han generado como

consecuencia la necesidad de proteger todos los sistemas eléctricos y electrónicos contra

fenómenos naturales como lo son las descargas eléctricas (rayo) o los creados por el

hombre, los cortos circuitos [6].

La instalación de un “Sistema de Puesta a Tierra”, requiere de un minucioso estudio, el

cual comprende los métodos de su diseño, las condiciones geológicas y meteorológicas

del sitio; pero sobre todo el respaldo técnico y científico de la actualidad, esto

complementado con las guías y recomendaciones prácticas de normas vigentes emitidas

por instituciones con credibilidad y trayectorias reconocidas [6].

3.1 Sistema de puesta a tierra.

Se puede decir que un sistema de puesta a tierra es el aterrizamiento físico o la conexión

de un equipo a través de un conductor hacia tierra; en tanto se sabe que la tierra está

compuesta por diversos materiales, los cuales pueden ser buenos o malos conductores

esto dependerá del tipo de suelo, al potencial de la tierra se le asume un valor de cero.

La resistencia de la tierra es la resistencia del suelo al flujo de la corriente, esta es

medida en Ω-m. Teóricamente, puede ser calculada usando la formula general [6]:

R = ρ L

A (3.1)

Donde:

R= Resistencia (Ω).

𝜌 =Resistividad de la tierra (Ω– m).

L = Longitud de tramo conductivo (m).

A = Sección transversal del área de la trayectoria (m2).

También se deben considerar tanto la temperatura como la humedad del suelo, puesto

que estos valores pueden afectar la resistividad del suelo [6].

Otro factor que interviene en la resistividad del suelo, son la acumulación de sales; en

general entre mayor cantidad de sales o electrolitos contenga el suelo menor será su

resistencia [6].

3.2 Objetivo de un sistema de puesta a tierra. Un sistema de puesta a tierra tiene como objetivos principales la protección contra [5]:

Fenómenos naturales tales como descargas eléctricas atmosféricas (rayos)

además de proveer un medio seguro para drenar a tierra corrientes eléctricas bajo

condiciones anormales y de falla sin exceder los límites de las corrientes de

Page 50: Sistema de puesta a tierra de tanques Con Productos Inflamables

49

operación y del equipo o afectar la integridad física de las personas, y la

continuidad del servicio.

Potenciales externos, como lo son fallas en los sistemas eléctricos, conexiones

auxiliares a tierra en sistemas de seguridad de operación instantánea, en sistemas

de relevadores de protección de fuerza, así como proveer caminos adicionales a

las corrientes de falla drenándolas a tierra rápidamente. Una vez especificado los objetivos principales del sistema de puesta tierra se puede

determinar que este sistema comprende todas las instalaciones de tierra interconectadas

dentro de un área específica y consiste de dos elementos básicos [5]:

Uno o varios electrodos de tierra según la definición de la IEEE 80-2000, “Un conductor enterrado que se usa para conducir y disipar las corrientes de tierra, dentro de la tierra física”.

Un conductor eléctrico con baja impedancia, para formar un “anillo”, o una

“red” para rodear el perímetro de un área en específico, con el fin de reducir la

resistencia de puesta a tierra.

Dentro de los requisitos básicos de diseño las normas IEEE 80-2000, ya la NRF-070-PEMEX-2004 recomiendan que cada elemento del sistema, incluyendo los conductores

de la red, las conexiones, las terminales, los electrodos de tierra, deben de ser diseñados

de acuerdo al tiempo de vida de la instalación. En la sección 14.5 de la Norma IEEE 80-2000, se recomienda el uso de electrodos químicos que consisten en un tubo de

cobre relleno de una sal metálica, acondicionando el suelo alrededor del electrodo como

la mejor solución para obtener una baja impedancia en la tierra y además da como

resultado un electrodo de larga duración [5].

Un adecuado diseño y una buena operación de un sistema de puesta a tierra son

fundamentales para dar un gran margen de seguridad y una buena operación en

cualquier instalación comercial o industrial, lo anterior es por las siguientes razones [5]:

Seguridad personal.

Una operación adecuada del equipo de protección contra descargas

eléctricas atmosféricas y eventos eléctricos transitorios derivados de las

mismas.

Proporcionar un camino de baja impedancia en los circuitos de falla, para

drenar las corrientes de falla a tierra rápidamente.

Una operación adecuada de los sistemas de comunicación, el equipo de

cómputo y los equipos electrónicos más vulnerables.

Ofrecer una referencia común a tierra para toda la instalación.

Page 51: Sistema de puesta a tierra de tanques Con Productos Inflamables

50

3.3 Características del suelo.

El suelo está compuesto de diversos componentes los cuales determinan su resistividad,

por lo que cuando se tiene un alta resistividad, se tiende a tener un mal conductor y un

buen aislante [23]. La resistividad de un terreno puede ser variante, ya que esta depende

del tipo de suelo y la época del año en que se encuentre, un ejemplo claro es la ciudad

de México que está compuesto por un suelo heterogéneo, puesto que existen zonas de

roca volcánica en el sur, roca en el norte, tepetate y arena en el poniente; arrojando un

panorama un tanto complejo para un buen diseño [23].

3.4 Resistividad del suelo.

La resistividad del suelo está en función de las características del mismo, además de las

dimensiones y formas de los electrodos, una forma de definir a la resistividad del suelo

es como: “La resistencia de un volumen que tenga un área con sección transversal

y longitud unitaria”, como se aprecia en la Fig. 3.1 [24].

Donde:

𝜌= Resistividad de suelo Ω − m . L = Longitud de tramo conductivo (m)

A = Sección transversal del área de la trayectoria (m2)

Fig. 3.1 Diagrama que simplifica el concepto de resistividad [24].

Page 52: Sistema de puesta a tierra de tanques Con Productos Inflamables

51

3.5 Factores que modifican la resistividad del suelo.

La conductividad del suelo es muy baja comparada con los metales, porque en general

la superficie terrestre está compuesta de oxido de silicio y oxido de aluminio, haciendo

que esta sea un buen aislante, en tanto la conductividad del suelo se debe en gran

medida a las sales y la humedad contenida en esos aislantes [24].

No obstante en estas condiciones el suelo puede conducir una corriente considerable,

esto es posible ya que la sección transversal del suelo es bastante grande y por lo tanto

se puede decir que no presenta limitaciones. Todo aquello puede hacer la resistividad

sea variable de un lugar otro, inclusive en un mismo sitio; en general los factores que

nos llevan a tener estas variaciones son los siguientes [24]:

La Composición.

El estado Higrométrico: Es la humedad relativa del aire [24].

La Granulometría: Es la medición de los granos en una formación

sedimentaria, el cálculo y tamaños previstos medidos por una escala

granulométrica. Para cuestiones de resistividad, es de gran importancia obtener

las características higroscópicas (absorción y retención de agua) de los granos en

cuestión [24].

La Compactación: Es un proceso artificial por medio del cual las partículas del

suelo son obligadas a estar en contacto unas con otras, mediante una reducción

de espaciamiento, empleando medios mecánicos. El grado de compactación

altera el valor de la resistividad, esto debido a la compactación, puesto que

cuando esta es grande la resistividad disminuye [24].

La Temperatura: La resistividad del terreno aumenta al disminuir la

temperatura, como lo muestra la Fig. 3.2 [24].

Fig. 3.2 Resistividad del suelo en función de la temperatura [24].

Page 53: Sistema de puesta a tierra de tanques Con Productos Inflamables

52

Salinidad: Estas es una forma soluble pueden disminuir la resistividad del

suelo cuando estas se encuentran en gran cantidad o dicho de otra manera

cuando aumenta la salinidad del terreno, una forma de entender esto es viendo

detenidamente la Fig. 3.3 y la Fig. 3.4 que muestra la resistividad del suelo en

función del tipo de sal [24].

Fig. 3.3 Resistividad el suelo en función del porcentaje de sales disueltas [24].

Fig. 3.4 Resistividad del suelo en función del tipo de sal [24].

Page 54: Sistema de puesta a tierra de tanques Con Productos Inflamables

53

La Humedad: Esta juega un papel de suma importancia porque entre menos

agua se tenga en el terreno mayor será la resistividad del mismo, como lo

muestra la Fig. 3.5, la grafica en color rojo que representa al terreno superficial

con muy poco porcentaje de humedad, que a diferencia de la grafica en color

verde esta contiene un grado mayor de humedad lo cual reduce su resistividad

[24].

Fig. 3.5 Resistividad en función de la humedad [24].

Estratificación del Suelo: Son los cambios transversales y longitudinales de

resistividad en un mismo volumen de terreno. No obstante debemos decir que la composición de un mismo lugar en un terreno

es heterogénea, debido a que puede estar compuesto por diferentes capas, bolsas,

sedimentos, etc., esto tanto horizontal como verticalmente, una forma de

representar esto es con la Fig. 3.6 en donde se observa que en un mismo

volumen de terreno se pueden encontrar diferentes resistividades, por lo tanto se

puede decir que la estratificación es: “La disposición en capas verticales y horizontales de las rocas sedimentarias” [24].

Fig. 3.6 Estratificación del suelo [24].

En conclusión la resistividad del suelo está en función de la forma en que está

compuesto, y el único camino legible para conocer su valor, es mediante los métodos de

medición, que permitirá conocer su magnitud en cada caso.

Page 55: Sistema de puesta a tierra de tanques Con Productos Inflamables

54

3.6 Métodos utilizados para la medición de la resistividad del suelo.

El valor obtenido en las mediciones del suelo, son valores de resistividad aparente, esto

debido a que siempre se puede calcular, ya que es posible conocer el lugar de los

electrodos de prueba, la tensión y la corriente de aplicación [24]. Aunque no se debe de

olvidar que el terreno no tiene una resistividad constante, ya que esta varía con la

trayectoria vertical y horizontal, de este modo la resistividad calculada no es tomada

como la real sino más bien como una aparente [24]. En tanto que las mediciones que se

realicen deben incluir los datos sobre la temperatura, contenido de humedad, salinidad

del terreno, tipo de terreno, profundidad, contenido de humedad; en la tabla 3.1 se

muestra la resistividad promedio con respecto al tipo de tierra y en la tabla 3.2 la

resistividad en función de la naturaleza del suelo, estas tablas darán una idea de que

efectivamente la resistividad de un terreno es aparente, puesto que en su mayoría es

homogéneo [23].

Tabla. 3.1 Resistividad Promedio [23].

Tipo de Tierra. Resistividad Promedio 𝛀 − 𝐦 .

Tierra orgánica mojada 10

Tierra húmeda 1,000

Tierra seca 10,000

Roca 100,000

Tabla. 3.2 Naturaleza del suelo [23].

Naturaleza del suelo. Resistividad promedio. 𝛀 − 𝐦 .

Terrenos pantanosos 30

Terreno húmedo o suelo orgánico 10-50

Terreno de cultivo o arcilloso 50-100

Tierra arenosa húmeda 100-200

Tierra arenosa seca 200-1000

Tierra con guijarros y cemento 200-1000

Roca cristalina 50-500

Arena y grava 50-1000

Roca porosa 20-2000

Suelo rocoso húmedo 2000-3000

Granito, basalto, etc. 1000

Roca compactada 1000

Limo 20-100

Humus 10-150

Turba húmeda 5-100

Arcilla plástica 50

Marga y arcillas compactadas 100-200

Page 56: Sistema de puesta a tierra de tanques Con Productos Inflamables

55

Las mediciones que se realicen permitirán establecer una representación del suelo a

través de un modelo homogéneo, por lo que dichas mediciones deberán realizarse en

varios puntos ubicados en el terreno [23].

3.6.1 Método Wenner o método de los cuatro puntos.

Fue desarrollado como su nombre lo indica por Frank Wenner, este método suele ser

utilizado cuando por lo general se cuenta con un suelo homogéneo, es decir de una sola

capa, y en el cual se pueden obtener mediciones constantes con separaciones diferentes

en los electrodos, en cambio si se trata de un suelo heterogéneo las mediciones variaran

en función del espaciamiento entre electrodos; por lo tanto este método es empleado

para medir la resistividad promedio del terreno [23].

3.6.1.1 Principios del método Wenner.

El método Wenner o también llamado método de los cuatro electrodos, es uno de los

más utilizados en la actualidad, este consiste básicamente en enterrar cuatro electrodos

en el suelo, en una línea recta, a una igual distancia A de separación y enterrados a una

profundidad B. Se mide la tensión P-P entre los electrodos internos y se divide entre la

corriente C que fluye a través de los dos electrodos externos, de esta manera se obtiene

un valor de resistencia mutua R en ohms, este arreglo puede ser apreciado en la Fig. 3.7

y 3.8 [24].

Fig. 3.7 Medición de la resistividad aparente utilizando el método Wenner [24].

Fig. 3.8 Esquema que muestra la medición por el método Wenner [24].

Page 57: Sistema de puesta a tierra de tanques Con Productos Inflamables

56

En donde [24]:

A= Separación de varillas adyacentes (m).

B= Profundidad de los electrodos (m).

C= Electrodo de corriente.

P= Electrodo de potencial.

3.6.1.2 Equipo y material empleado.

a) Equipo contrastado de medición de resistencia a tierra [25].

b) Electrodos originales que viene junto con el quipo de medición, generalmente

fabricados de acero templado o acero inoxidable con un diámetro de 0.475 a

0.6354 cm y con longitudes de 30 a 60 cm, los electrodos deben estar

construidos con una manija y una terminal para conectar el cable [25].

c) Un cable de cobre con un aislamiento de 600 V, de 0.8236-03259 mm2 [25].

d) Marro para clavar los electrodos [25].

e) Guantes de cuero [25].

3.6.1.3 Procedimiento de la medición.

Se hace circular una corriente de baja frecuencia por lo electrodos laterales o de

corriente (C), y por medio de un voltmetro de alta impedancia que está conectado entre

los electrodos centrales (P) se mide la caída de potencial [23].

Una vez que se han obtenido estas mediciones, se calcula la resistencia (R) con la

relación de tensión y corriente; ya obtenido este valor se procede a emplear la ecuación

3.2, para obtener el valor de la resistividad del terreno [24].

Aunque se debe aclarar que la siguiente expresión puede utilizarse siempre y cuando la

relación entre A/B sea menor a 20 [23].

ρ =4πAR

1 + 2A

A2 + 4B2 −

A

A2 − B2

(3.2)

En donde:

ρ = Resistividad de terreno (Ω-m).

A= Separación de varillas adyacentes (m).

Page 58: Sistema de puesta a tierra de tanques Con Productos Inflamables

57

B= Profundidad de los electrodos (m).

R= Resistencia medida (Ω).

Si fuese el caso en que B fuera mayor que A, es decir que la profundidad fuese mayor

que la separación entre electrodos se emplearía la siguiente ecuación [23]:

ρ = 4πAR (3.3)

Y si se dan las circunstancias en que B fuese menor que A, se emplearía la siguiente

ecuación [23]:

ρ = 2πAR (3.4)

Las lecturas que se obtienen pueden ser graficadas en función de su espaciamiento, es

decir 𝐁 vs A, esto permitirá determinar que en dado caso se tendrá un terreno

compuesto por varias capas; aunque debe resaltarse que las mediciones se deben realizar

de preferencia en temporada de sequia [23].

En el caso de que se conozca el área que ocupara el sistema de puesta atierra, las

mediciones deben hacerse en dirección con las cuatro esquinas del terreno, esto a partir

del centro asía fuera, con una separación A de 3 a 5 m, dependiendo de la profundidad

que requieran los electrodos [23]. Las distancias A recomendada entre los electrodos

son de: 1.6, 3.2, 4.8, 6.4, 8.0, 9.6, y 11.2 m [24].

3.6.2 Método de Schlumberger. En el método de Wenner se tomaba en cuenta la caída de tensión en los electrodos

interiores, sin embrago si se tuviese una distancia considerable entre dichos electrodos,

la magnitud de tensión tiende a un decremento [23], por el gran espaciamiento que

existe; lo cual trae como consecuencia una gran inexactitud en la medición de la

resistividad del terreno [24].

A diferencia del método antes mencionado, el método de Schlumberger permite medir

la resistividad del terreno con espaciamientos mayores entre electrodos [23], como se

puede ver en la Fig. 3.9.

Fig. 3.9 Principio de medición de resistividad aparente del terreno, empleando el método

Schlumberger [24].

Page 59: Sistema de puesta a tierra de tanques Con Productos Inflamables

58

En este método los electrodos de potencial (P), se localizan lo más cerca posible de los

electrodos de corriente (C), de este manera se incrementa tensión medida [23]. Si se

considera que la profundidad (B) es menor en comparación con la separación entre ellos

la resistividad puede ser calculada por la ecuación (3.5) [23].

ρs

=πRc c + d

d (3.5)

Donde [23]:

𝜌𝑠= Resistividad aparente del suelo (Ω-m).

c= Distancia entre electrodos de corriente y potencial (m).

d= Distancia entre electrodos de tensión (m).

R= Resistencia medida del terreno (Ω).

A continuación se muestra una tabla con valores típicos de resistividad.

Tabla 3.3 Valores de resistividad para varios tipos de suelo y agua [24].

Tipo de suelo o agua. Resistividad (𝛀 − 𝐦). Limites (𝛀 − 𝐦).

Agua de mar 2 0.1 - 10

Arcilla 40 8 - 70

Lodos 50 10 - 150

Arcilla y mezclas de arenas 100 4 - 300

Piedra arenisca y esquisto 120 10 - 100

Turba, marga con barro 150 5 - 250

Agua dulce 250 100 - 400

Arena 2000 200 - 3000

Grava morena 3000 40 -10,000

Grava volcánica 15000 300 – 30,000

Granito solido 25000 10,000 – 50,000

hielo 100,000 10,000 – 100,000

En conclusión con este método las variaciones de resistividad debidas a la composición

del terreno, se reducen considerablemente y se obtiene una mayor precisión en

longitudes de medición considerables.

Page 60: Sistema de puesta a tierra de tanques Con Productos Inflamables

59

3.6.3 Método de los tres puntos o caída de tensión. Consiste en hacer circular una corriente de valor conocido entre dos electrodos fijos,

uno que será auxiliar de corriente (C2) y otro de prueba (C1), con el objetivo de medir

la caída de tensión. Este método permite variar la profundidad de un tercer electrodo

denominado electrodo de prueba (P2), el cual se considera como una parte integral del

sistema de puesta a tierra [23]. El electrodo auxiliar (P2) que se menciono

anteriormente, está ubicado entre los dos electrodos auxiliares (C2 y C1 ), con el

objetivo de que este será desplazado a lo largo del espacio que existe entre ellos, esto

para obtener diversas lecturas, como se puede apreciar en la Fig. 3.10 [23]:

Fig. 3.10 Método de caída de tensión.

Debemos aclarar que los electrodos auxiliares deben ser enterrados a poca profundidad

de forma radial a partir del electrodo de prueba [24].

Este método consiste en graficar la relación V/I=R, como una función de la variación de

la distancia X. Como se menciono con anterioridad el electrodo auxiliar de tensión se

mueve a lo largo del espacio que existe entre los electrodos auxiliarles (C2 y C1) con

incrementos de 10% de la distancia, de esta manera se obtiene el valor de la resistencia

para cada incremento [24].

Una vez visto esto si se considera un suelo uniforme, se recomienda localizar el

electrodo de tensión (P2) a 62 % de distancia entre C2 y C1. Este procedimiento es muy

preciso, pero el único inconveniente que tiene es que solo es aplicable para suelos

uniformes [23].

La resistividad del terreno puede ser obtenida por la siguiente expresión [23]:

ρc

=2 π Le R

ln 4 Le

re − 1

(3.6)

Page 61: Sistema de puesta a tierra de tanques Con Productos Inflamables

60

Donde:

ρc= Resistividad aparente del suelo (Ω-m).

Le= longitud del electrodo bajo prueba (m).

R= Resistencia medida del terreno (Ω-m).

re= Radio de la sección transversal del electrodo bajo prueba (m).

En conclusión este método es de gran ayuda para determinar las variaciones de la

resistividad del terreno, debido a que se pueden graficar las longitudes del electrodo de

prueba vs la resistividad del terreno, como lo muestra la Fig. 3.11 [23].

Fig. 3.11 Curva típica de resistencia tierra [24].

Todos los métodos que se mencionaron con anterioridad, son formas de cómo puede ser

medida la resistividad de un terreno y a continuación se explicaran los métodos que

existen para disminuir dicha resistividad.

3.7 Compuestos químicos para la resistividad del suelo. En ocasiones se pueden tener valores altos en la resistividad del suelo, en este caso

pueden ser empleados combinaciones de materiales tales como: bentonita (arcilla), gel

(solución salina), resinas sintéticas, mezclas químicas especiales compuestas a base de

sodio, sulfato de cobre, sulfato de magnesio, cloruro de calcio, silicatos, carbón mineral

tipo coke, grafito y yeso, los cuales son colocados alrededor de los electrodos [23].

Por otro lado se debe tener en cuenta que algunos de estos elementos pueden corroer o

sulfatar a los electrodos, debido a sus propiedades químicas y físicas, generando como

consecuencia un incremento en la resistencia del terreno, por lo que se recomienda [23]:

No emplear carbón mineral sin molerse.

Page 62: Sistema de puesta a tierra de tanques Con Productos Inflamables

61

No aplicar carbón mineral tipo coke como único material de relleno, debido a

que no posee ningún aglutínante.

No emplear sal ya que corroerá los electrodos.

No utilizar recortes metálicos o rebabas, puesto que acelera la oxidación y la

degradación de los electrodos.

Los materiales anteriormente descritos retardan la evaporación de la humedad del suelo,

permitiendo conservar la resistividad del terreno [23].

Para poder elegir el tipo de tratamiento químico se deben considerar los siguientes

factores [23]:

Porcentaje de reducción inicial en la resistividad del suelo.

Tiempo de vida útil, considerando al elemento y del sistema de puesta a tierra.

Facilidad de reactivación.

Estabilidad (mantener la misma resistencia durante varios años).

Una vez que se ha elegido adecuadamente el tratamiento químico, este debe tener las

siguientes características [23]:

Los compuestos no deben ser corrosivos.

Deben ser químicamente estables en el suelo.

Alta conductividad.

3.7.1 Tratamientos para la reducción de la resistividad del suelo.

Existen diversos tipos de tratamientos químicos para reducir la resistencia del suelo, los

comúnmente empelados son [23]:

Cloruro de sodio más carbón vegetal.

Bentonita.

3.7.1.1 Cloruro de sodio más carbón vegetal.

Esta solución salina tiene una elevada actividad corrosiva sobre los electrodos, para

evitar este problema se disuelve con agua, sin embargo es cierto que al circular una

corriente eléctrica se da la formación de una celda electrolítica provocando el

desprendimiento de cloro y la formación de hidróxido de sodio, favoreciendo la

corrosión, por lo tanto de aquí que se debe mezclar con carbón vegetal molido, ya que

Page 63: Sistema de puesta a tierra de tanques Con Productos Inflamables

62

este tiene la capacidad de absorber la humedad y de esa manera no es posible la

formación de la celda electrolítica, dando como resultado un buen aislante [23].

3.7.1.2 Bentonita

Las bentonitas son pertenecientes a un grupo de sustancias minerales arcillosas, aun

cuando estas difieren en sus propiedades químicas, se clasifican en dos grupos [23]:

Bentonita Sódica: En las que el ion Sodio es permutable, y además tiene la

peculiaridad de alcanzar 15 veces su propio volumen y 5 veces su peso [23].

Bentonita Cálcica: En esta el ion Calcio es permutable, por lo tanto tiene una menor

capacidad para absorber el agua y por consiguiente solo aumenta su volumen como una

arcilla normal [23].

El uso de magnesio, cloruro de calcio y sulfatos de cobre, incrementan la resistividad

del suelo que rodea a los electrodos; la bentonita a diferencia de las sales no es

corrosiva, además tiene una resistividad de 2.5 Ω/m y debido a su naturaleza

higroscópica, permite conservar la humedad que hay en el terreno [23].

Ya que se han visto algunos aspectos básicos de un sistema de puesta a tierra y lo

relacionado con las características que debe de tener el terreno, se da paso a definir los

criterios de tensión de seguridad.

3.8 Criterios de tensión de seguridad.

Para el caso del diseño del sistema de protección contra descargas eléctricas

atmosféricas, se tomaran los criterios que se dan en la planificación y estudio de un

sistema de puesta a tierra para subestaciones, puesto que se debe recordar que la

subestaciones están blindadas con pararrayos o bayonetas y aterrizadas a tierra, al igual

que los tanques están en la intemperie, por lo tanto de esta manera a continuación se

definen los limites de tensión en un circuito accidental [23].

3.8.1 Tensión de paso.

Se define como la diferencia de potencial que se ejerce entre los pies de una persona con

una separación de 1m, cuando esta se encuentra caminando en el área de una

subestación al ocurrir una falla [23].

Dicho de otra manera la tensión de paso es la que se presenta entre dos puntos

separados a un metro sobre la superficie del suelo, en caso de presentarse una falla [23].

Page 64: Sistema de puesta a tierra de tanques Con Productos Inflamables

63

La Fig. 3.11 muestra claramente la corriente de falla que es descargada a tierra, en la

cual se puede ver que la IB fluye desde el punto F1 en el que pisa unos de los pies de una

persona, al caminar por una subestación, esta corriente circula hasta el punto F2 en el

cual se encuentra su otro pie [24].

Fig. 3.11 Tensión de paso [24].

Otra forma de representar estas dos terminales (F1 y F2) es con el teorema de Thevenín

mostrado en la ecuación 3.7 y ejemplificada en la Fig. 3.11 y la Fig. 3.12, donde Vth es

la tensión entre dichas terminales cuando la persona no está presente en ese punto; la Zth

es la impedancia del sistema vista desde los puntos F1 y F2 con las fuentes de tensión en

corto circuito, por lo tanto la IB es la que circula por la persona [23].

IB =Vth

Zth + RB

(3.7)

Donde:

Vth = Tension de Thevenín (V).

Zth = Impedancia de Thevenín Ω .

RB = Resistencia del cuerpo huamno Ω , normalmente este valor es de 1000 Ω.

IB = Corriente que fluye por el cuerpo humano A .

Page 65: Sistema de puesta a tierra de tanques Con Productos Inflamables

64

Fig. 3.12 Circuito de tensión de paso [24].

En tanto que la Zth del circuito formado con la tensión de paso es [23]:

Zth = Rs (3.8)

Rs = 2Rf (3.9)

Donde:

Rs = Resistencia de contacto con el suelo de los dos pies en serie Ω .

Rf = Resistencia de contacto de un solo pie Ω .

Nótese que la resistencia del pie no es la es la resistencia de la persona, es la resistencia

de la tierra debajo del pie [22].

Sustituyendo la ecuación 3.9 en la ecuación 3.7, se obtiene la ecuación de tensión de

paso, que es:

Epaso = IB 2Rs + RB (3.10)

Si se toma en cuenta la consideración que se indica en la importancia de la malla sobre

el pie humano y lo referente a la capa superficial, se puede decir que la impedancia

equivalente de Thevenín del circuito formado accidentalmente con la tensión de paso es

[23]:

Zth = 6 Cs ρs (3.11)

En donde Cs es un factor correctivo, que es empleado para calcular la resistencia

efectiva de los pies en presencia de un grosor finito de material superficial, hs [24]. Este

factor se da por que el material superficial servirá como un aislante, el cual permite

Page 66: Sistema de puesta a tierra de tanques Con Productos Inflamables

65

elevar la resistencia a tierra de la persona que camina por esa área, los valores de los

materiales se dan en la tabla 3.3 y cuenta con las siguientes ventajas [23]:

Esta capa brinda una alta resistividad.

Evita que se formen charcos de aceite, por fugas en equipos de potencia.

Limita el crecimiento de pasto y maleza.

Mantiene la humedad en el terreno.

En resumen la ecuación de corrección es [24]:

Cs = 1 −

0.09 1 − ρρ

s

2(hs) + 0.09 (3.12)

Donde [23]:

ρ= Resistividad del suelo debajo del material superficial Ω − m .

ρs= Resistividad del material de la capa superficial Ω − m .

Cs= Factor que relaciona el valor de la resistividad de la capa superficial ρs, con el valor

de la resistividad del terreno ρ.

hs= Espesor del material de la capa superficial (m).

Para dar una idea de cómo es que se encuentra la capa de material sobre el terreno, la

Fig. 3.13 muestra el corte del suelo.

Fig. 3.13 Corte que muestra la capa de material superficial usada para incrementar la

resistencia de contacto entre los pies de la persona y el suelo [24].

Page 67: Sistema de puesta a tierra de tanques Con Productos Inflamables

66

Tabla 3.3 Valores de Resistividad de Aislantes [23].

Material.

Resistividad a 20 ºC 𝛀 − 𝐦 .

Ámbar 5x1014

Azufre 1x1014

Baquelita 2x105 a 2x1014

Cuarzo (fundido) 75x1016

Ebonita 1x1013 a 2x1016

Madera 1x108 a 2x1011

Mica 1x1011 a 2x1015

Vidrio 1x1010 a 2x1014

Graba de galeana (metal negro) 3x103

Granito gneis 25x103

Grava bolder 15x103

Piedra caliza 5x103

Grava moran 3x103

Roca base dura 1190

Analizando lo anterior se puede establecer que para una persona con un peso promedio

de 70 Kg la tensión de paso sería [23]:

Epaso 70 Kg = 1000 + 6 Cs ρs ∗

0.157

ts (3.13)

Algo similar seria para una persona con un peso de 50 Kg, en este caso la ecuación seria

[24]:

Epaso 50 Kg = 1000 + 6 Cs ρs ∗

0.116

ts (3.14)

Donde:

ρs= Resistividad del material de la capa superficial Ω − m .

Cs= Factor que relaciona el valor de la resistividad de la capa superficial ρs, con el valor

de la resistividad del terreno ρ.

ts= Duración de la exposición al flujo de corriente (segundos).

Page 68: Sistema de puesta a tierra de tanques Con Productos Inflamables

67

3.8.2 Tensión de contacto. Es la máxima diferencia de potencial entre los pies de una persona que se encuentra

parada en el área de una subestación y el punto de contacto con una o ambas manos al

tocar una estructura metálica al ocurrir una falla, esto puede ser apreciado en la Fig.

3.14 [27].

Fig. 3.14 Tensión de toque [24].

En la figura anterior se puede observar que una If de falla, la cual es conducida hacia

tierra a través del sistema de puesta a tierra de la subestación y a la persona que hace

contacto con la estructura en un punto H [24].

Esto es representado en la Fig. 3.15, en donde la terminal H es un punto de contacto

que esta al mismo potencial de la red y por el cual fluye la corriente de falla, en tanto

que la terminal F es una pequeña área donde la persona se encuentra haciendo contacto

con ambos pies [24].

Fig. 3.15 Impedancia para el circuito de tensión de contacto [24].

Page 69: Sistema de puesta a tierra de tanques Con Productos Inflamables

68

El teorema de Thevenin permite representar los puntos H y F por medio del la

Fig.3.16, así como la corriente Ib que fluye desde H circulando por el cuerpo de la

persona hasta F.

Fig. 3.16 Circuito de contacto [24].

Aplicando el teorema de Thevenín para el circuito anterior se puede ver que, donde Vth

es la tensión entre dichas terminales cuando la persona no está presente en ese punto; la

Zth es la impedancia del sistema vista desde los puntos F1 y F2 con las fuentes de

tensión en corto circuito, por lo tanto la IB es la que circula por la persona [27].

IB =Vth

Zth + RB

(3.15)

Donde:

Vth = Tension de Thevenín (V).

Zth = Impedancia de Thevenín. Ω .

RB = Resistencia del cuerpo huamno Ω , normalmente este valor es de 1000 Ω.

IB = Corriente que fluye por el cuerpo humano A .

Y como puede ser apreciado en la Fig. 3.14 IB = Ib, entonces la tensión de toque está

representada por la ecuación 3.16, además de que la resistencia RB representa a la

resistencia de mano a mano [23], de mano a pie o de pie a pie según sea el caso, siendo

esta de 1000 Ω, en tanto que la Zth es representada por la ecuación 3.17 [24]:

Etoque = IB Zth + RB (3.16)

Page 70: Sistema de puesta a tierra de tanques Con Productos Inflamables

69

Zth = 1.5 Cs ρs (3.17)

Realizando sustituciones y productos obtenemos la ecuación de tensión de toque [24]:

Para una persona con un peso de 70 Kg [23].

Etoque 70 Kg = 1000 + 1.5Csρs

0.157

ts (3.18)

Para una persona con un peso de 50 Kg [24]:

Etoque 50Kg = 1000 + 1.5Csρs

0.116

ts (3.19)

Donde:

ρs= Resistividad del material de la capa superficial Ω − m .

Cs= Factor que relaciona el valor de la resistividad de la capa superficial ρs, con el valor

de la resistividad del terreno ρ.

ts= Duración de la exposición al flujo de corriente (segundos).

Estos parámetros son recomendados por la IEEE 80-2000 [24].

3.9 Selección del conductor del sistema de puesta a tierra.

Cada uno de los elementos del sistema de puesta a tierra incluyendo los conductores del

mismo y los electrodos que formaran en conjunto la malla, deben seleccionarse de tal

manera que cumplan con los siguientes requisitos [23]:

Tener la suficiente conductividad para no generar diferencias de potencial en la

malla.

Una resistencia a la fusión y el deterioro en condiciones desfavorables, dados en

tiempo y magnitud, debido a corrientes de falla.

Deben ser confiables y contar con una alta resistencia mecánica, especialmente

en lugares donde pueden quedar expuestos a algún daño o abuso físico.

Que sean capaces de mantener sus características en presencia de corrosión.

El conductor normalmente utilizado para la red de tierra es de cobre con una sección

transversal de 107.20 𝐦𝐦𝟐 (4/0 AWG), puesto que este presenta una alta resistencia

térmica, grandes condiciones mecánicas y una buena conductividad; al igual que

presenta una alta resistencia a la corrosión haciéndolo de esta manera un buena opción

para el sistema de puesta a tierra [23].

Page 71: Sistema de puesta a tierra de tanques Con Productos Inflamables

70

Para conocer la sección transversal del conductor del sistema de puesta a tierra, en

función del incremento de la temperatura, la magnitud de la falla, el tiempo de duración

de la falla y conociendo las constantes del material, puede ser determinada con la

siguiente expresión [23]:

I = Ar TcapX10−4

tfαrρr

ln K0+Tm

K0+Ta (3.20)

En donde:

I= Corriente de falla simétrica eficaz (KA).

Ar= Área de la sección transversal del conductor (mm2o KCM).

Tm= Temperatura máxima permisible del material (ºC).

Ta = Temperatura ambiente (ºC).

Tr= Temperatura de referencia para las constantes del material (ºC)

tf = Tiempo de duración de la corriente (segundos).

α0 = Coeficiente de resistividad térmica a 0 ºC (1/ºC).

αr= Coeficiente de resistividad térmica de referencia Tr (1/ºC).

ρr= Resistividad del conductor de tierra a la temperatura de referencia Tr (μΩ − cm).

K0= 1/α0 o también K0= 1/αr − Tr (ºC).

Tcap= Capacidad térmica por unidad obtenida en la tabla 3.4 en j/cm3/ºC.

Nótese que αr y ρr son encontrados para la misma temperatura de referencia (20 ºC),

proporcionados en la tabla 3.4.

Tabla 3.4 Características de materiales [24].

Descripción. Conductividad.

Factor. 𝛂𝐫 a 0

ºC

Ko (𝟏/𝛂𝟎) a0 ºC

Temperatura de fusión

ºC

𝛒𝐫 a 20 ºC

(𝛍𝛀 −𝐜𝐦).

Factor TCAP

(j/𝐜𝐦𝟑

º𝐂)

Cobre suave

recocido

100.0 0.00393 234 1083 1.7241 3.422

Cobre duro 97.0 0.00381 242 1084 1.7774 3.422

Page 72: Sistema de puesta a tierra de tanques Con Productos Inflamables

71

Descripción. Conductividad.

Factor 𝛂𝐫 a 0

ºC

Ko (𝟏/𝛂𝟎) a0 ºC

Temperatura de fusión

ºC

𝛒𝐫 a 20 ºC

(𝛍𝛀 −𝐜𝐦).

Factor TCAP

(j/𝒄𝒎𝟑

º𝑪)

Cobre con alma

de acero

40 0.00378 245 1084/1300 4.397 3.486

Aluminio EC 61.0 0.00403 228 657 2.862 2.556

Aluminio

aleación 5005

53.5 0.00353 263 660 3.2226 2.598

Aluminio

aleación 6201

52.5 0.00347 268 660 3.2840 2.598

Aluminio con

alma de acero

20.03 0.00360 256 660/1300 8.4805 2.670

Acero reservado

de Zinc

8.5 0.00320 293 419/1300 20.1 3.931

Acero inoxidable

No. 304

2.4 0.00130 749 1400 72.0 4.032

La tabla 3.5 proporciona una rápida referencia de los materiales más comunes,

asumiendo los siguientes parámetros [27]:

Temperatura ambiente de 40 ºC.

Limite de temperatura de fusión (ºC).

Temperatura máxima permisible para las juntas o uniones soldadas a 450 ºC.

Temperatura máxima permisible para cables críticos y juntas atornilladas a 250

ºC.

Tabla 3.5 Constantes de materiales [24].

Descripción.

Conductividad del

material (%).

Tm (ºC).

Kf.

Cobre recocido

suave-inmersión

100 1083 7

Cobre comercial

estirado en frió

97 1084 7.06

Alambre de acero

revestido de cobre

40 1084 10.45

Varilla de acero

con recubrimiento

de cobre.

20 1084 14.64

Aluminio grado EC 61 657 12.12

Aluminio aleación

5005

53.5 652 12.41

Aluminio aleación

6201

52.5 654 12.47

Alambre de acero

con recubrimiento

de aluminio

20.3 657 17.2

Page 73: Sistema de puesta a tierra de tanques Con Productos Inflamables

72

Descripción.

Conductividad del

material (%).

Tm (ºC).

Kf.

Acero, 1020 10.8 1510 15.95

Varilla de acero

inoxidable.

9.8 1400 14.72

Varilla de acero

con recubrimiento

de Zinc

8.6 419 28.96

Acero inoxidable 2.4 1400 30.05

Como se puede ver en la tabla 3.4 para conductores de cobre duro cierta temperatura de

referencia y con una conductividad de 97 % se tiene los siguientes valores [23]:

αr= 0.00381 1/1ºC con Tf = 20 ºC.

K0= 242 ºC.

Tm= 1084 ºC.

𝜌𝑟= 1.78 μΩ − cm con Tf = 20 ºC.

Tcap = 3.42 j/cm3/ºC.

Despejando el are del conductor de la ecuación 3.20, tenemos [27]:

Ar =I

Tcap X 10−4

tfα rρr ln

K 0+TmK 0+Ta

(3.21)

3.10 Resistencia del sistema de puesta a tierra.

La resistencia del S.P.T juega un papel de suma importancia para reducir los gradientes

de tensión, que puedan presentarse en caso de la descarga eléctrica, debido a que la

mayor densidad de corriente se presenta en la periferia de la malla [23].

Por lo general las resistencias aceptables para la red de tierras (S.P.T), está entre 1 y 5

Ω; considerando un aceptable valor de resistencia en la red de tierras, para un suelo

uniforme, la resistencia de esta se determina por la siguiente expresión [23]:

Rg =ρ

A

π

4 (3.22)

Page 74: Sistema de puesta a tierra de tanques Con Productos Inflamables

73

En donde:

Rg = Resistencia de la red de tierras (Ω).

ρ = Resistividad del terreno (Ω-m).

A= Área de la superficie ocupada por la red de tierras (m2).

Cuando es considerado la longitud de los conductores de la malla en conjunto con los

electrodos, la resistencia es:

Rg =ρ

A

π

4+

ρ

Lt (3.23)

Donde:

Lt = Longitud total de la red, incluyendo los conductores horizontales y verticales (m).

La ecuación anterior considera la longitud total de la red, para dar una mayor certeza y

seguridad, se adiciona la profundidad del S.P.T, por lo tanto se obtiene la siguiente

expresión [23]:

Rg = ρ 1

Lt+

1

10A 1 +

1

1+h 20

A

(3.24)

En donde:

Rg = Resistencia de la red de tierras (Ω).

h = Profundidad de la red de tierra (m).

ρ = Resistividad del terreno (Ω-m).

Lt = Longitud total de la red, incluyendo los conductores horizontales y verticales (m).

Page 75: Sistema de puesta a tierra de tanques Con Productos Inflamables

74

3.11 Máxima tensión de malla. Esta tensión es la que se presenta en el centro de la malla, dicha tensión es mucho

mayor en la esquinas de la red; el incremento de tensión depende del tamaño de la

misma, cantidad, localización de electrodos, separación entre conductores paralelos,

diámetro, profundidad de los conductores y perfil de la resistividad del terreno [27].

En el diseño de S.P.T se considera la máxima tensión de malla, por lo que esta tensión

puede ser calculada con la siguiente expresión [27]:

Em =ρ Ig Km Ki

Lm (3.25)

Donde:

Em= Tensión de malla (V).

Ki = Factor de ajuste de la geometría de la red.

Km= Factor de espaciamiento para la tensión de malla.

Lm= Longitud efectiva de los conductores de la red (m), para la tensión de malla.

Ig= Corriente de falla que circula en la red del sistema de puesta a tierra (A).

El factor Km puede ser calculado por la siguiente expresión [27]:

Km =1

2π ln

D2

16 h dr +

D+2h 2

8 D dr −

h

4dr +

Kii

Khln

8

π 2n−1 (3.26)

Donde:

D= Espaciamiento entre conductores en paralelo (m).

dr= Diámetro del conductor de la red (m).

Kh = Factor de ajuste de peso y profundidad de la red.

h = Profundidad de los conductores horizontales enterrados de la red de tierra (m).

n= Numero de conductores equivalentes en cualquier dirección.

Kii = Factor de ajuste de peso y efectos internos en la red, que es “1” para redes de tierra

que cuentan con electrodos verticales a lo largo de su perímetro y/o en las esquinas [24].

dr= Diámetro del conductor de la red (m).

Page 76: Sistema de puesta a tierra de tanques Con Productos Inflamables

75

El cálculo del diámetro del conductor de la red, se realiza con la siguiente ecuación.

dr = 4 Ar

π (3.27)

Cuando se tienen electrodos a lo largo del perímetro de la red, con electrodos en la

esquinas de la red o cuando se tienen los dos casos; el factor Kii es [23]:

Kii= 1 (3.28)

Sin electrodos ó pocos esparcidos en la red de tierras, pero ninguno en las esquinas o en

el perímetro de la red del sistema de puesta a tierra [27]:

Kii =1

2n 2

n (3.29)

Donde:

n= Es el factor de geometría o numero efectivo de conductores paralelos.

Para calcular Kh se emplea la siguiente expresión [23]:

kh = 1 +h

h0 (3.30)

Donde:

h0 = 1 m, profundidad de referencia de la red.

El número de conductores paralelos “n” en una red dada o irregular, se representa por

el número de conductores paralelos en una red rectangular equivalente [23]:

n = na nb nc nd (3.31)

En donde:

na =2 Lc

Lp (3.32)

Lc= Longitud total de los conductores horizontales en la red de tierras (m).

Lp= Longitud de los conductores en la periferia de la red de tierras (m).

nb= 1, para redes cuadradas.

nc= 1, para redes cuadradas y rectangulares.

Page 77: Sistema de puesta a tierra de tanques Con Productos Inflamables

76

nd= 1, para redes cuadradas, rectangulares y con forma de L.

Si fuera el caso de que la red de tierras no contara con las características anteriores

(cuadradas, rectangulares y en forma de L); se aplican las siguientes expresiones [23]:

nb = Lp

4 A (3.33)

nc = Lx∗Ly

A

0.7ALxLy

(3.34)

nd =Dm

Lx 2+ Ly

2 (3.35)

Donde:

Lc= Longitud total de los conductores horizontales en la red de tierras (m).

Lp= Longitud de los conductores en la periferia de la red de tierras (m).

A= Área de la superficie ocupada por la red de tierras (m2).

Lx= Longitud máxima de la red sobre el eje x (m).

Ly = Longitud máxima de la red sobre el eje y (m).

Dm= Distancia máxima entre dos puntos, cualesquiera de la red (m).

El factor de ajuste de geometría o irregularidad de la red (Ki), en función del número de

conductores en paralelo (n), es determinado por la siguiente expresión [24]:

Ki = 0.644 + 0.148(n) (3.36)

A diferencia que si la red no cuenta con electrodos o con una cantidad mínima de ellos,

pero ninguno localizado en las esquinas o a lo largo del perímetro de la red; en este caso

la longitud efectiva (Lm) es:

Lm = Lc + LR (3.37)

En donde:

Lc= Longitud total de los conductores horizontales en la red de tierras (m).

LR= Longitud total de todos los electrodos verticales (m).

Lm = Longitud efectiva (m).

Page 78: Sistema de puesta a tierra de tanques Con Productos Inflamables

77

Para redes que están formadas con electrodos en las esquinas, a lo largo del perímetro, y

distribuidos en el área de la red, la longitud efectiva (Lm) de los conductores enterrados

incluyendo a los electrodos, está determinada por la siguiente ecuación:

Lm = Lc + LR 1.55 + 1.22 Lr

Lx 2+ Ly

2 (3.38)

Donde:

Lc= Longitud total de los conductores horizontales en la red de tierras (m).

LR= Longitud total de todos los electrodos verticales (m).

Lm = Longitud efectiva (m).

Lr= longitud de cada electrodo vertical (m).

Lx= Longitud máxima de la red sobre el eje x (m).

Ly = Longitud máxima de la red sobre el eje y (m).

3.12 Máxima tensión de paso.

Es la tensión que se presenta entre un punto sobre el exterior de una de las esquinas de

la red y punto que se encuentra a 1 m de distancia fuera de la red; aunque se debe de

tener en cuenta que las tensiones de paso no representan un gran peligro, puesto que son

menos peligrosas que las tensiones de malla; pero cuando la red está recubierta con un

material de alta resistividad, como puede ser roca triturada, y esta no es prolongada al

exterior de la red, da como resultado que las tensiones de paso que se generen ahí sean

altamente peligrosas. Por lo que es recomendable que la máxima tensión de paso sea

comparada con la tensión de paso calculada, en caso de que se obtenga una máxima

tensión de paso mayor que la tensión de paso calculada, se recomienda extender la capa

del material con alta resistividad hacia afuera de la cerca o eliminando esquinas.

La tensión de paso se determina con la siguiente ecuación:

Es =ρ Ks Ki Ig

Ls (3.39)

En donde:

Es= Tensión de paso (V).

LS= 0.75LC+0.85LR (3.40)

Page 79: Sistema de puesta a tierra de tanques Con Productos Inflamables

78

Ks =1

π

1

2h+

1

D+h+

1

D 1 − 0.5n−2 (3.41)

Donde:

Ls= Longitud efectiva de los conductores de la red (m).

Ks= Factor de espaciamiento para la tensión de paso.

D= Espaciamiento entre conductores en paralelo (m).

h = Profundidad de los conductores horizontales enterrados de la red de tierra (m).

n= Numero de conductores equivalentes en cualquier dirección.

3.13 Longitud mínima del conductor.

Como se describió en el punto anterior la máxima tensión de malla debe ser menor que

la tensión de toque, por lo que es necesario preliminarmente, determinar la longitud

mínima de los conductores que conformaran la malla de red de tierra, esto sin tomar en

cuenta a los electrodos, la ecuación que determina esta longitud se muestra a

continuación (para un persona con un peso promedio de 70 Kg):

Lc >ρ Km Ki Ig ts

157+0.235 Cs ρs (3.42)

Lo tratado a lo largo de este capítulo, da las bases para el cálculo de un sistema de

tierras para una subestación eléctrica; tomando esto como una base para el diseño de

tierras tal como lo marca la IEEE 80-2000, esta se tomara como una referencia para

realizar el sistema de tierras del sistema de protección para los tanques de

almacenamiento de productos inflamables.

Page 80: Sistema de puesta a tierra de tanques Con Productos Inflamables

79

CAPÍTULO IV

TANQUES DE ALMACENAMIENTO

DE PRODUCTOS INFLAMABLES

Page 81: Sistema de puesta a tierra de tanques Con Productos Inflamables

80

4. Tanques de almacenamiento de productos inflamables.

La industria petrolera utiliza diferentes tipos de tanques de almacenamiento, entré los

más utilizados son el de tipo techo flotante, ya que este tiene la característica de evitar la

acumulación de gases en el tanque, esto tratándose del almacenamiento de productos

volátiles como lo son: petróleo crudo, naftas y gasolinas [22].

La tabla 4.1 muestra que tipo de color debe tener el tanque, cuando este almacena

diferentes productos, definidos por la NRF-075 de PEMEX [30].

Tabla 4.1 Colores que deben de tener los tanques de almacenamiento [30].

Producto Color primario Color secundario Envolvente Techo

Gas licuado de

petróleo Blanco brillante -

Blanco

brillante -

Gasolina de

aviación Naranja - Aluminio Blanco brillante

Gasolina especial Bermellón

(rojo) Azul trianón Aluminio Blanco brillante

Gasolina regular Bermellón

(rojo) - Aluminio Blanco brillante

Nafta industrial Turquesa Blanco brillante Aluminio Blanco brillante

Nafta especial Bermellón

(rojo) Blanco brillante Aluminio Blanco brillante

Solventes Verde turquesa - Aluminio Blanco brillante

Tolueno Azul claro - Aluminio Blanco brillante

Turbocombustible

producción

nacional

Gris acero - Aluminio Blanco brillante

Turbocombustible

exportación Gris acero - Aluminio Blanco brillante

Queroseno Verde Blanco brillante Aluminio Blanco brillante

Page 82: Sistema de puesta a tierra de tanques Con Productos Inflamables

81

Producto Color primario Color secundario Envolvente Techo

Combustible

diesel

Amarillo

tostado - Aluminio Blanco brillante

Aceites

lubricantes Cocoa - Aluminio Blanco brillante

Aceite usado Cocoa Negro brillante Negro mate Negro mate

Petróleo Blanco brillante - Negro mate Negro mate

Petróleo crudo Negro brillante Verde manzana Aluminio Blanco brillante

Asfalto Ferroprotector

negro -

Ferroprotector

negro

Ferroprotector

negro

Alcohol

desnaturaliza-do Azul trianon - Aluminio Blanco brillante

Agua Gris dublin - Gris dublin Gris dublin

4.1 Patío de tanques.

Un patio de tanques es una de las instalaciones más importantes para el almacenamiento

bombeo y limpieza del petróleo desde sus diferentes centros de producción hasta sus

terminales de embarque y refinerías. Como se sabe el crudo producido es enviado desde

los pozos a las estaciones recolectoras, en donde es nuevamente bombeado de forma

continua hacia los patios de tanques para su almacenamiento [31].

En los patios de tanques es en donde el crudo recibe un tratamiento, mediante un

proceso de deshidratación, esto para cumplir la calidad que exige el mercado, una vez

que es realizado este proceso se bombea a las refinerías o es enviado en buques-

tanqueros para su exportación [31].

Debido a que el proceso de almacenamiento y de deshidratación es llevado a cabo las

veinticuatro horas del día, es necesario tomar en cuenta todas las medidas de

mantenimiento, seguridad y protección, esto para evitar pérdidas económicas; en los

programas de mantenimiento se encuentran las revisiones periódicas a los tanques,

pintura y limpieza de fondos [31].

Page 83: Sistema de puesta a tierra de tanques Con Productos Inflamables

82

4.2 Área de un patio de tanques.

Los patios de tanques están constituidos de distintos tipos de instalaciones, entre ellas se

encuentran [31]:

Múltiple de Recolección: Es el área donde se encuentran todas la tuberías o

líneas de flujo provenientes de las estaciones de flujo o segregadoras.

Separador API: Esta sección lleva a cabo la recuperación de crudo, el cual esta

combinado con agua, después del proceso de deshidratación, la capa de crudo

que flota sobre el agua es separada mediante unos deflectores que se encuentran

ubicados a la salida de la tubería, estos deflectores son movidos para capturar el

crudo que se encuentra flotando sobre el agua; por ultimo una vez que el agua es

separada del crudo, se bombea a una planta de tratamiento para poder ser

reutilizada en el proceso de deshidratación.

Estación o Salas de Bombas: Es el lugar donde se encuentran instaladas las

bombas que mueven el crudo dentro de los tanques hacia el exterior del patio de

tanques.

Múltiple de Succión: Es la tubería que proviene de los tanques de

almacenamiento para alimentar la succión del tren de bombas.

Múltiple de descarga: Es el conjunto de tuberías que se unen al oleoducto que

conduce el crudo.

4.3 Tipos de tanques.

Los tanques de almacenamiento pueden ser clasificados en base a diferentes criterios,

un análisis global de la instalación y por su impacto sobre el proceso de construcción;

así que se pueden encontrar los siguientes diseños [22].

4.3.1Tanques cuadrados o rectangulares.

Son empleados para almacenar productos con un bajo riesgo de incendio como lo son:

agua, mieles, jarabes, etc. Son de una baja capacidad, en promedio de unos 20 m3 y son

construidos generalmente de acero al carbono, operando a presión atmosférica [22].

Page 84: Sistema de puesta a tierra de tanques Con Productos Inflamables

83

4.3.2 Tanques cilíndricos horizontales. Utilizados para el almacenar productos de diferente naturaleza química, estos pueden

ser: ácidos, álcalis, combustibles, lubricantes, etc. [22]. Son de mediana capacidad de

almacenamiento con un volumen no mayor a 150 m3; este tipo de tanques pueden ser de

tipo aéreo (aboveground storage) o subterráneo (underground storage) y además contar

con extremos planos o abovedados, como el que se muestra en la Fig. 4.1 [22].

Fig. 4.1 Tanque cilíndrico horizontal [22].

4.3.3 Tanques cilíndricos verticales.

Al igual que el tanque cilíndrico horizontal este tipo almacena: ácidos, álcalis,

hidrocarburos, efluentes industriales, como se muestra en la Fig. 4.2. Con la diferencia

de poseer una gran capacidad de almacenamiento, alcanzando un volumen de 10,000 a

20,000 𝐦𝟑, y estos a su vez se clasifican según sus aspectos [22]:

1. Tipo de cobertura: abiertos o techados

2. Tipo de techo: fijo o flotante. Techos flotantes a pontón o a membrana

3. Tipo de fondo: plano o cónico

Por lo que con relación a su selección, esta dependerá del volumen requerido, el espacio

disponible, las inversiones exigidas etc.

Fig. 4.2 Tanque cilíndrico vertical [22].

Page 85: Sistema de puesta a tierra de tanques Con Productos Inflamables

84

Como se cito anteriormente los tanques de techo flotante cuentan con un techo flotante

como su nombre lo indica, tal y como se observa en la Fig. 4.3, esto es para evitar la

formación de vapores, de esta manera no se generan pérdidas por evaporación del

producto, además se evita la formación de gases explosivos alrededor del tanque [30].

El techo puede ser interno (en donde existe un techo fijo colocado en el tanque) o un

techo externo (a cielo abierto); en la actualidad los nuevos techos se construyen de

aluminio, el cual toma la forma de un domo geodésico como si fuera un techo fijo del

tanque; las ventajas que presenta esta nueva tecnología son las siguientes [30]:

Es un techo autoportante, lo que quiere decir es que no necesita de columnas

para que los sostengan.

Son construidos en aluminio.

Son construidos en el suelo, y montados por medio de una grúa; reduciendo el

riesgo de trabajar a grandes alturas.

Fig. 4.3 Tanque tipo de techo flotante [30].

Existen otros conocidos como tanques plegables RO-TANK que han sido desarrollados

para almacenar hidrocarburos recuperados por embarcaciones anti contaminación que

no disponen de tanques propios o que estos no son de gran capacidad [30].

Page 86: Sistema de puesta a tierra de tanques Con Productos Inflamables

85

Los RO-TANK pueden ser remolcados llenos o vacios a velocidades de 7 nudos, esto en

función del estado del mar, este tipo de tanque puede ser apreciado de una mejor manera

en la Fig. 4.4; gracias a sus conexiones ASTM es posible unir varios tanques para ser

remolcados. Además de que están fabricados con una gruesa plancha de caucho y

neopreno reforzado con cuatro capas internas de tejido de poliéster, haciendo esto en

conjunto una combinación de materiales resistentes a la abrasión y la perforación. Su

recubrimiento de caucho Hypalon hace que estos tanques sean resistentes a los

hidrocarburos que almacenan a si como a los agentes atmosféricos (rayos ultravioleta,

ozono, salitre, etc.)

Fig.4.4 Tanque plegable [30].

A continuación la tabla 4.2 muestra los datos técnicos de los tanques plegables [30];

Tabla. 4.2 Datos técnicos de los tanques plegables [30].

DATOS TÉCNICOS

Dimensiones (lleno)

Dimensiones (embalado) Peso en seco

Ro-Tank 50 m3 5,3 x 2,2 x 0,8 m 2,2 x 0,5 x 0,5 m 125 Kg.

Ro-Tank 10 m3 9,5 x 2,2 x 0,8 m 2,2 x 0,8 x 0,8 m 195 Kg.

Ro-Tank 15 m3 14 x 2,2 x 0,8 m 2,2 x 1,0 x 1,0 m 265 Kg.

Ro-Tank 25 m3 22 x 2,2 x 0,8 m 2,2 x 1,2 x 1,2 m 575 Kg.

Ro-Tank 50 m3 14 x 3,8 x 1,8 m 4 x 1 x 0,8 m 650 Kg.

Page 87: Sistema de puesta a tierra de tanques Con Productos Inflamables

86

La tabla 4.3 describe las dimensiones reales con las que cuentan los tanques de techo

flotante o atmosférico [25].

Tabla 4.3 Dimensiones reales de los tanques de almacenamiento tipo techo flotante [28].

DIMENSIONES DE TANQUES DE ALMACENAMIENTO

ATMOSFÉRICOS CAPACIDAD

Barriles

(Metros cúbicos)

DIÁMETRO

Metros

(Pies)

ALTURA

Metros

(Pies)

1000 6.096 5.486

(159) (20) (18)

2000 7.468 7.315

(318) (24.5) (24)

3,000 9.144 7.315

(477) (30.00) (24.00)

5,000 9.652 10.973

(795) (31.66) (36.00)

10,000 12.954 12.192

(1,590) (42.50) (40.00)

15,000 17.678 9.754

(2,385) (58.00) (32.00)

20,000 18.288 12.192

(3,180) (60.00) (40.00)

30,000 22.352 12.192

(4,770) (73.33) (40.00)

40,000 25.908 12.192

(6,360) (85) (40)

55,000 30.480 12.192

(8,745) (100.00) (40.00)

80,000 36.576 12.192

(12,720) (120.00) (40.00)

100,000 40.843 12.192

(15,900) (134.00) (40.00)

150,000 45.720 14.630

(23,850) (150.00) (48.00)

200,000 54.864 14.630

(31,800) (180.00) (48.00)

500,000 85.344 14.630

(79,500) (280.00) (48.00)

Page 88: Sistema de puesta a tierra de tanques Con Productos Inflamables

87

4.3.4 Recipientes a presión (pressure vessels).

La mayoría de los productos producidos en las industrias requieren para su almacenaje y

utilización, presiones superiores a la atmosférica, como los mostrados en la Fig. 4.5,

esto da lugar a los recipientes llamados recipientes a presión. Este tipo de recipientes

son capaces de contener productos de diferente naturaleza química, bajo las condiciones

requeridas como pueden ser: presión, temperatura, concentración, etc. [22]

Dependiendo de los volúmenes manejados y de las condiciones de operación, estos

recipientes son construidos de las siguientes formas [22]:

Recipientes cilíndricos horizontales con fondos abovedados

Recipientes verticales con fondos abovedados

Recipientes verticales encamisados (jacketed vessels, cryogenic gases)

Recipientes esféricos o esféricos modificados

Fig. 4.5 Recipiente a presión [22].

En nuestro país el diseño y cálculo de tanques de almacenamiento, se basa conforme a

las publicaciones del “Instituto Americano del Petróleo”, que emite la Estándar A.P.I 650, para tanques de almacenamiento a presión atmosférica y la Estándar A.P.I 620

para tanques a presiones internas de 1 kg/cm2 [22].

4.4 Partes que constituyen un tanque de techo flotante.

A continuación se muestra las partes mas esenciales que constituyen un tanque de techo

flotante, esto para dar una idea de cómo es que está constituido este tanque, ya que el

trabajo está dirigido a proteger tanques de este tipo.

Equipos de Medición: Utilizan diversos sistemas de medición de nivel desde el

más sencillo como lo son un flotador y cadena, hasta equipos electrónicos de radio

frecuencia.

Page 89: Sistema de puesta a tierra de tanques Con Productos Inflamables

88

Bocas de Inspección: Facilitan la entrada y salida de personal que realiza

inspecciones programadas, mantenimiento y reparaciones internas de los

tanques.

Boquillas: Son conexiones de entrada y salida de las tuberías que se conectan al

casco.

Termopozos: Permiten realizar observaciones visuales de temperatura del

producto.

Líneas: Los tanques poseen tuberías de entrada (llenado), salida (succión),

contra expansión, circulación, drenaje y de serpentín de vapor.

Líneas de Entrada: Las líneas de entrada (llenado) se usan para almacenar los

crudos o productos refinados en los tanques; su diámetro lo determina la presión

que impulsa el fluido hacia los tanques. Generalmente, las líneas de entrada

están situadas cerca del fondo del tanque para evitar formación de gases y

excitación de la electricidad estática.

Líneas de Salida: Las líneas de salida (succión), al igual que las de entrada,

están colocadas cerca del fondo del tanque. Su diámetro lo determina la

capacidad de las bombas que succionan el fluido y la viscosidad de estos.

Líneas de Contra Expansión: Las líneas de contra expansión se usan para

evitar que se acumule la presión por efectos de expansión y rompa la línea de

entrada o dañe la pared del tanque.

Líneas de Circulación: Las líneas de circulación permiten homogeneizar el

producto; la mezcla de los productos se hace necesaria debido a que las partes

más pesadas se depositan en el fondo y las más livianas quedan arriba, pasado

cierto tiempo, lo cual no permite tener disponible un producto homogéneo. La

mezcla del contenido de un tanque se realiza por medio de una bomba, la cual

descarga en el mismo tanque que succiona o a otro diferente.

Líneas de Drenaje: Las líneas de drenaje están situadas al lado y muy cerca del

fondo de los tanques y sus diámetros son proporcionales al tamaño de estos.

Algunas de estas líneas se prolongan hasta el centro del fondo de los tanques

(debido a que algunos tanques tienen cierta inclinación hacia el centro), para

eliminar, de esta manera, los sedimentos y el agua casi por completo.

Línea de Agua: Tuberías dispuestas alrededor del tanque con la finalidad de

transportar y distribuir agua alrededor del mismo, además esta línea posee una

tubería interna por donde se distribuye la espuma contra incendio.

Page 90: Sistema de puesta a tierra de tanques Con Productos Inflamables

89

Línea de Enfriamiento: Es el sistema de rociadores externo de los tanques el

cual a su vez tiene varias tomas o hidrantes para la conexión hacia los tanques

y/o hacia camiones apaga fuego, en casos de emergencias.

Línea de Espuma: La línea de espuma es la que parte de una estación de

bombas donde se mezcla agua con productos químicos para formar la espuma

contra incendios, de allí parte a unas cámaras internas de espumas en los

tanques.

Cámara de Espuma: Es la que expande la espuma hacia el interior de los

tanques.

Artesón: Consiste en una estructura tipo caja abierta en su parte superior, que se

instala en las líneas de succión para evitar que los sistemas de bombeo puedan

succionar el agua y/o sedimento que generalmente se deposita en el fondo del

tanque.

Plataforma de Aforo: Es una estructura instalada en la parte superior del tanque

desde donde se efectúan los aforos oficiales en forma segura.

Drenaje del Techo: Conjunto de equipos que posibilita un correcto manejo de

los fluidos, que puedan depositarse sobre el techo, considerando para tal

propósito, procesos de captación, conducción, y evacuación de los mismos.

Manguera de Drenaje: Manguera utilizada en los sistemas de drenaje; está

diseñada para soportar presiones tanto externas como internas y además cuenta

con un amplio rango de temperaturas.

Sistema de Drenaje: Es una válvula de seguridad ajustable, manual o

automáticamente, a las presiones necesarias, y que se encarga de evitar el contra

flujo del líquido que circula por ella.

Pontones: Sistemas de flotación de los techos flotantes.

Venteo: Es el sistema diseñado para prevenir los efectos de las alteraciones

bruscas de presión interna de un depósito o tanque de almacenamiento como

consecuencia de las operaciones de trasvase o de las variaciones de la

temperatura ambiente.

Soportes: Son el conjunto de párales tubulares, sobre los cuales descansa el

techo flotante en su mínimo nivel de liquido.

Page 91: Sistema de puesta a tierra de tanques Con Productos Inflamables

90

Escalera del Techo: Es la escalera que conecta la plataforma de aforo del

tanque con el techo flotante.

Válvulas de Drenaje: Válvulas mediante las cuales se realizan las operaciones

de drenaje del tanque.

Válvula Principal: Es la válvula mediante la cual se llevan a cabo las

operaciones de llenado y vaciado de los tanques.

Sello del Tanque: Estos sistemas son utilizados en los techos flotantes. Cada

tipo de sello puede ser de distintos materiales de manera que sean compatibles

con el líquido que se almacenan en el tanque; estos sellos son diseñados para

impedir el escape hacia la atmósfera de los vapores y el líquido almacenado

dentro del tanque.

Rociadores: Es el sistema de enfriamiento de los tanques.

Techo Flotante: Estructura metálica hermética puesta sobre pontones cilíndricos

que le permiten a este suspenderse sobre el producto o dicho de otra manera es

un elemento que tiene movimiento vertical, que atrapa bajo él, los vapores

despedidos por el producto.

Boca de Aforo: Es la abertura sobre el techo del tanque, a través de la cual se

hacen las medidas y se toman las muestras para un aforo.

Tubo de Aforo: Es un tubo perforado que se extiende desde el fondo del

tanque, hasta la boca de aforo. El borde superior deberá ser el nivel para tomar

las medidas y se convierte en el punto de referencia del tanque sin la

interferencia de espuma u ondas.

Drenaje Rápido del Techo Flotante: Es una boquilla de emergencia por donde

se drena el agua depositada sobre el techo flotante cuando está en su posición

más baja, y cuando el tanque no contiene producción (1,30mt del suelo, los

soportes del techo deben estar en posición de mantenimiento). Esta solo se

utiliza cuando el tanque se va sacar de servicio.

Page 92: Sistema de puesta a tierra de tanques Con Productos Inflamables

91

Ya que se ha mencionado algunos de los elementos que constituyen a un tanque de

techo flotante, se debe ejemplificar dichas partes, esto se puede dar con las Fig. 4.6, Fig.

4.7, Fig. 4.8, Fig. 4.9, Fig. 4.10, Fig. 4.11 y Fig. 4.12 donde puede ser apreciado más a

detalle su construcción física, que tipo de elementos los comprenden, cuáles son sus

características, etc.

Fondos de tanques atmosféricos verticales.

Fig. 4.6 Muestra los diferentes fondos que son empleados en los tanques [32].

Page 93: Sistema de puesta a tierra de tanques Con Productos Inflamables

92

Tanque vertical con cúpula geodésica.

Fig. 4.7 Tanque vertical con los elementos que lo constituyen [32].

Tanque vertical con techo fijo.

Fig. 4.8 Representación grafica de un tanque de techo fijo [32]

Page 94: Sistema de puesta a tierra de tanques Con Productos Inflamables

93

Tanque vertical de techo flotante.

Fig. 4.9 Representación grafica de un tanque de techo flotante [32].

Tanque vertical con M.F.I de Acero y techo fijo.

Fig. 4.10 Representación de tanque vertical con M.F.I y techo fijo [32].

Page 95: Sistema de puesta a tierra de tanques Con Productos Inflamables

94

Tanque vertical con techo fijo y M.F.I de aluminio.

Fig. 4.11 Muestra a un tanque vertical con techo fijo y M.F.I de aluminio [32].

Tanque de combustóleo.

Fig. 4.12 Muestra un tanque de Combustóleo [32].

Page 96: Sistema de puesta a tierra de tanques Con Productos Inflamables

95

4.4.1 Trabajos preliminares.

Antes de comenzar la construcción del tanque se debe de tomar en cuenta el

requerimiento del proceso operativo, la capacidad del tanque y la selección del sitio de

su instalación [34].

Una vez que se haya determinado el lugar de emplazamiento, se procederá al

levantamiento de topográfico y el estudio de mecánica de suelos, una vez que se tenga

la información se determinara los niveles de operación del tanque, para poder considerar

estos valores, se deben tomar en cuenta las siguientes integraciones [34]:

- Integración de líneas de proceso.

- Integración de líneas de contra incendio y agua de enfriamiento.

- Integración de drenaje pluvial.

- Integración de drenaje aceitoso.

- Integración a la red eléctrica y de tierras.

- Integración de las señales de operación y control.

- Urbanización del área.

De los resultados obtenidos en el estudio de mecánica de suelos se procederá a

determinar el tipo de cimentación que se requiere de acuerdo a las características del

suelo [34].

4.4.2 Cimentación. Para garantizar una correcta construcción de un tanque, es necesario garantizar que a

partir de la construcción de la cimentación, los requerimientos de nivelación,

verticalidad y redondez se cumplan estrictamente como lo marca la API 650 [34].

Los tanques nuevos serán construidos sobre estructuras de concreto reforzado como lo

muestra la Fig. 4.13, las cuales son diseñadas de acuerdo con las recomendaciones de la

API 650 apéndice B [34].

Fig. 4.13 Muestra el anillo de cimentación para el tanque [34].

Page 97: Sistema de puesta a tierra de tanques Con Productos Inflamables

96

4.4.3 Fondo.

En el caso de los tanques de techo flotante las placas de fondo deben tener un espesor

nominal de 6 mm, o un peso de 49.8 Kgm2 , además si el tanque se encuentra en una

región húmeda se recomienda agregar al espesor una tolerancia, aumentando esta hasta

un límite de 9 mm [34].

Existen tres métodos para la construcción de fondo de los tanques, a continuación se

describirán cada uno de ellos [34]:

Placas traslapadas. Consiste en construir el fondo del tanque por medio de placas traslapadas,

como se muestra en la Fig. 4.14, es decir una placa encima de otra a una

distancia de separación no mayor a 305 mm, las placas deben tener una

forma rectangular con bordes en escuadra.

Fig. 4.14 Traslape de placas para la construcción del fondo del tanque [34].

Page 98: Sistema de puesta a tierra de tanques Con Productos Inflamables

97

Placas soldadas a tope. En este caso las placas deben tener bordes paralelos y una preparación en

“V” o cuadradas para soldarse a tope, si en el diseño se especifican ranuras

cuadradas la abertura no debe ser menor de 6.3 mm, además deben de llevar

una tira o solera de bronce con un espesor mínimo de 3.2 mm, la cual

funcionará como un respaldo, como se muestra en la Fig. 4.15.

Fig. 4.15 Unión de placas en preparación “V” [34].

Combinación de placas traslapadas y placas soldadas a tope. En este método se emplean las dos formas para la construcción del fondo del

tanque, empleando placas rectangulares e irregulares en forma traslapada

para la parte central del fondo y placas soldadas a tope para el anillo anular

del fondo.

4.4.4 Techos.

Las placas de los techos deben de tener un espesor mínimo de 4.8 mm, con un máximo

de 37.5 mm, en el caso de que se trate de un techo auto soportado, se podrán utilizar

mayores espesores; las placas de los techo cónicos soportados, no deben de fijarse a los

elementos de soporte [34]. Tomando en cuenta estos parámetros se puede agregar que

todos los elementos estructurales internos y externos deben tener un espesor nominal

mínimo de 4.87 mm [34].

En resumen de todos los puntos anteriormente relatados, se da una descripción de los

elementos que conforman al tanque de almacenamiento, dando como resultado un

panorama mucho más realista del mismo.

Page 99: Sistema de puesta a tierra de tanques Con Productos Inflamables

98

CAPÍTULO V

CÁLCULO DEL NIVEL DE PROTECCIÓN Y

DISEÑO DEL SISTEMA DE PUESTA A TIERRA

MEDIANTE EL PROGRAMA CALIXTO-87

Page 100: Sistema de puesta a tierra de tanques Con Productos Inflamables

99

5. Cálculo del nivel de protección y diseño del sistema de puesta a tierra mediante el programa CALIXTO-87.

El programa que se utilizara está basado en el diagrama de flujo de la norma UNE 21.186 y la norma IEE 80-2000, en el cual muestra los pasos para determinar el nivel de

protección, el cálculo y diseño del sistema de puesta a tierra.

Una vez determinado el diagrama de flujo del programa, este será realizado en MATLB,

ya que este lenguaje de programación permite realizar funciones que en el DEV C++,

Fortran o en cualquier otro lenguaje sería más complejo, puesto que como bien es

sabido MATLAB, combina las herramientas y principios de estos programas, haciendo

de este una forma fácil de crear y entender para cualquier persona relacionada con la

Ingeniería Eléctrica.

5.1 Funcionamiento del programa CALIXTO-87. A continuación se describirán los pasos que realizara Calixto-87, que fue realizado con

el propósito de cumplir uno de los objetivos específicos de esta tesis:

El primer paso que se realiza es la determinación de la superficie de captura

(Ae).

Se ingresa la frecuencia establecida de impactos directos sobre la estructura

(Nd).

Se calcula la frecuencia establecida de impactos sobre una estructura (Nc).

Procederá a realizar una comparación entre Nd y Nc, de esta comparación nos

dirá si es necesario o no implementar el sistema de protección.

De no ser necesario el programa finaliza el procedimiento, en caso contrario el

programa calculara la eficiencia.

Una vez calculada la eficiencia, el programa identifica que nivel de protección

es el más adecuado para proteger el elemento.

Ya elegido el nivel de protección, se dará la corriente de cresta máxima que

produce la descarga y la distancia de cebado.

Toma como corriente de falla la corriente máxima de cresta de acuerdo al nivel

de protección.

Se procede a calcular el calibre del conductor.

Page 101: Sistema de puesta a tierra de tanques Con Productos Inflamables

100

Se toman en consideración los criterios de tensión de toque y paso.

Procede a realizar el cálculo de la longitud del conductor.

Calcula la resistencia de la red.

Se calcula la tensión de malla.

Procede a determinar la corriente máxima de la red.

Una vez hecho lo anterior, realizará una comparación de la tensión máxima de la

red con la tensión de toque máxima tolerable por el cuerpo humano.

Si esta tensión es mayor se hará una modificación en el diseño.

Realizada la modificación o es su defecto que se ha aprobado el cálculo proceder

a comparar la tensión de paso de la red con la tensión de paso soportada por el

cuerpo humano.

Por último arroja los resultados de la selección del nivel de protección y el

diseño del sistema de puesta a tierra para los pararrayos.

Page 102: Sistema de puesta a tierra de tanques Con Productos Inflamables

101

5.2 Diagrama de flujo del programa CALIXTO-87.

Paso 1

Paso 2

Paso 3

Si

Paso 4

No

Paso 5

Si Paso 6

No

Si

Paso 7

No Si

Paso 8

Paso 9

Paso 10

Superficie de Captura (Ae)

Frecuencia Establecida de Impactos

Directos sobre la Estructura (Nd)

Frecuencia Establecida de Impactos

sobre la Estructura (Nc)

Nd < Nc PROTECCIÓN

NO NECESARIA.

Calculo de la Eficiencia (E)

0.95< E<=0.98 Nivel I

0.80< E<=0.95 Nivel II

0< E<=0.80 Nivel III

Corriente Según el Nivel de

Protección (Ap)

Calibre del Conductor

Page 103: Sistema de puesta a tierra de tanques Con Productos Inflamables

102

Paso 11

Paso 12

Si

Paso 13

Paso 17

No

Paso 14

No Paso 15

Si

No Paso 16

Si

Paso 18

Criterios de Tensión de Toque y

Paso (E toque y E paso).

Diseño Inicial

Ig*Rg < E toque

Tensión de Malla.

Em < E toque

Es < E paso

Modificación del

Diseño.

INICIO DEL

DISEÑO.

Page 104: Sistema de puesta a tierra de tanques Con Productos Inflamables

103

5.3 Diseño del sistema de blindaje y del sistema de puesta a tierra mediante un proceso analítico.

El objetivo de este punto es el de realizar un procedimiento analítico, de tal manera que

se pueda comprobar la veracidad de los resultados obtenidos mediante el programa

CALIXTO-87.

Datos técnicos:

Condiciones atmosféricas:

Altura del tanque = 14 m.

Ng (densidad anual media de impactos de rayos en la región) = 8 numero de rayos/𝐊𝐦𝟐/ año.

Condiciones en las que se encuentra el tanque:

Se encuentra en un patio de tanques con la misma altura.

El líquido contenido es agua.

La ocupación del tanque es nula.

No es necesario una continuidad en el servicio.

Características del suelo del suelo y de la malla:

Resistencia del terreno= 45 Ω-m.

Dimensión de la malla= 5 x 5m

Profundidad de la malla= 0.5 m.

El material que se emplea es cobre, esto por sus propiedades físicas y químicas; los

conductores de cobre cuentan con una conductividad del 97%, teniendo este material los

siguientes valores:

αr = 𝟎. 𝟎𝟎𝟎𝟑𝟖𝟏 𝟏/°𝐂 Con Tr = 𝟐𝟎 °𝐂.

K0 = 𝟐𝟒𝟐°𝐂.

Tm = 𝟏𝟎𝟖𝟒°𝐂

ρr

= 𝟏. 𝟕𝟖 𝛍𝛀 − 𝐜𝐦 Con Tr = 𝟐𝟎°𝐂

TCAP = 𝟑. 𝟒𝟐 𝐉𝐜𝐦𝟑°𝐂

Ta = 𝟐𝟎°𝐂

Page 105: Sistema de puesta a tierra de tanques Con Productos Inflamables

104

5.3.1 Cálculo de la superficie de captura.

Empleando la ecuación (2.7), se calcula la superficie de captura con la dimensión del

tanque.

Ae = 9 π h 2 = 9 π 14 2 = 𝟓𝟓𝟒𝟏. 𝟕𝟔 𝐦𝟐

5.3.2 Selección del coeficiente de la situación de la estructura.

Las condiciones en las que se encuentra el tanque, se eligen mediante la Tabla 2.3.

En este caso en particular se trata de un patio de tanques con la misma altura; por lo

tanto el coeficiente C1 tiene un valor de 0.5.

Con la ecuación (2.5), se calcula la frecuencia de impactos directos sobre el tanque.

Nd = Ng 1.1 Ae C1 10−6 = 8 1.1 5541.76 0.5 10−6 = 𝟎. 𝟎𝟐𝟒

5.3.3 Cálculo de la frecuencia aceptable de rayos sobre el tanque (Nc).

Para el cálculo de Nc, es necesario contemplar las características del tanque; para este

cálculo se emplea la ecuación (2.8), tomando los valores de las Tablas 2.4, 2.5, 2.6 y 2.7.

Tomando los valores de las respectivas tablas:

C2 = 2, C3 = 0.5, C4 = 0.5, C5 = 1.

C = C2 C3 C4 C5 = 2 0.5 0.5 1 = 𝟎. 𝟓

Calculado el coeficiente C, se procede a calcular Nc.

Nc =3x10−3

C=

3x10−3

0.5= 𝟔𝐱𝟏𝟎−𝟑

5.3.4 Determinación del nivel de protección.

Con la ecuación (2.10) se determina si es necesario o no implementar la protección, si

es necesaria la protección, se dictará que nivel de protección es necesario.

E = 1 − Nc

Nd = 1 −

6x10−3

0.024 = 𝟎. 𝟕𝟓

Page 106: Sistema de puesta a tierra de tanques Con Productos Inflamables

105

Utilizando la Tabla 2.9, se compara el resultado de la eficiencia y es elegido el nivel de

protección; en este caso se eligió un nivel de de protección III; con una malla de 10 x 10

m.

Utilizando una corriente de corto circuito de 25 kA, la cual se emplea en el cálculo de la

sección transversal del conductor.

5.3.5 Cálculo de la sección transversal del conductor.

Con la ecuación (3.21), se calcula la sección transversal del conductor.

Ar =I

TcapX10

−4

tfαrρr

ln K0 + Tm

K0 + Ta

=25

3.24𝑥10

−4

0.2 0.00381 1.78 ln

242 + 1084242 + 20

= 𝟑𝟗. 𝟐𝟖 𝐦𝐦𝟐 , por lo tanto el conductor cuenta con un calibre de (1 AWG).

5.3.6 Determinación de tensión de toque y paso.

Una vez calculado el calibre del conductor, se calcula las tensiones de toque y paso

mediante las ecuaciones (3.18) y (3.13).

Etoque 70 kg = 1000 + 1.5Csρs

0.157

ts = 1000 + 1.5 1 45

0.157

0.2

= 𝟑𝟕𝟒. 𝟔𝟗 𝐕

Epaso 70 kg = 1000 + 6 Cs ρs

0.157

ts = 1000 + 6 1 45 ∗

0.157

0.2

= 𝟒𝟒𝟓. 𝟕𝟕 𝐕

5.3.7 Determinación de la longitud del conductor.

Se debe considerar que la malla forme un cuadrado, que en este caso es posible ya que

las dimensiones de o de las mallas así lo permiten.

Eje X

Eje Y=

10 m

10 m= 𝟏

Page 107: Sistema de puesta a tierra de tanques Con Productos Inflamables

106

Por lo que tentativamente se consideran 10 mallas en eje X y 10 mallas en el eje Y; y

para calcular la separación entre conductores se emplea la siguiente ecuación:

D =2 l1 l2

L − l1 − l2 (5.1)

Donde:

D= Separación entre conductores (m).

l1= Largo de la red (m).

l2= Ancho de la red (m).

L= longitud total (m).

L = (# de conductores en X ) Eje X + # de conductores en Y Eje Y

Realizando la ecuación (5.1), teniendo en cuenta que tentativamente esta es la longitud

total de la red:

Lc = Lt = 10 10 + 10 10 = 𝟐𝟎𝟎 𝐦.

D =2 l1 l2

Lt − l1 − l2=

2 10 10

200 − 10 − 10= 𝟏. 𝟏𝟏𝐦

5.3.8 Resistencia de la red.

Para el cálculo de la resistencia de la red, se emplea la ecuación (3.24).

Rg = ρ

1

Lt

+1

10A

1 +1

1 + h 20A

= 45

1

200+

1

10 100

1 +1

1 + 0.5 20

100

= 𝟐. 𝟕𝟔 𝛀

Page 108: Sistema de puesta a tierra de tanques Con Productos Inflamables

107

5.3.9 Cálculo del número de conductores paralelos en la malla.

Para poder determinar el número de conductores en paralelos, se emplean la ecuaciones

(3.31) y (3.32), por tratarse de una malla cuadrada solo se calculara el valor de na, los

demás valores ya están preestablecidos.

La longitud total del perímetro se calcula con la siguiente ecuación:

Lp = 2l1 + 2l2 = 2 10 + 2 10 = 𝟒𝟎

na =2 Lc

Lp

=2 200

40= 𝟏𝟎

nb = 𝟏; nc = 𝟏; nd = 𝟏

n = na nb nc nd = 10 1 1 1 = 𝟏𝟎

5.3.10 Cálculo del factor de espaciamiento para la tensión de malla.

En este paso del diseño se emplean las ecuaciones (3.26), (3.27), (3.28), (3.29) y (3.30); ya que se consideran a los electrodos.

Kii =1

2n 2

n =

1

2 10 2

10 = 𝟎. 𝟓𝟒

En l siguiente paso h0 es considerado con un valor unitario, tomado como referencia.

kh = 1 + h

h0

= 1 + 0.5

1 = 𝟏. 𝟐𝟐

dr = 4 Ar

π=

4 42.4

π= 𝟕. 𝟑𝟒 𝐦𝐦 ≅ 𝟎. 𝟎𝟕𝟑𝟒 𝐦

Según la tabla 250-95 de la NOM 001, el área del conductor es de 42.4 mm2.

5.3.11 Cálculo del factor de espaciamiento para la tensión de malla.

Km =1

2π ln

D2

16 h dr +

D + 2h 2

8 D dr −

h

4dr

+Kii

Kh

ln 8

π 2n − 1

Page 109: Sistema de puesta a tierra de tanques Con Productos Inflamables

108

= 1

2π ln

1.11 2

16 0.5 0.0734 +

1.11 + 2 0.5 2

8 1.11 0.0734 −

0.5

4 0.0734 +

0.54

1.22ln

8

π 2 10 − 1

= 0.171 V

5.3.12 Cálculo del factor de corrección por geometría.

Para efectuar este cálculo se emplea la ecuación (3.36).

Ki = 0.644 + 0.148 n = 0.644 + 0.148 10 = 𝟐. 𝟏𝟐𝟒

5.3.13 Cálculo de la tensión de malla máxima.

Ahora se utiliza la ecuación (3.25).

Em =ρ Ig Km Ki

Lm

= 45 25x103 0.171 2.124

200= 𝟐𝟎𝟒𝟑.𝟎𝟐 𝐕

Una vez calculada la tensión de malla máxima, se procede a realizar la comparación de

esta misma con la tensión de toque calculada con anterioridad.

Emalla > Etoque 70 kg

𝟐𝟎𝟒𝟑.𝟎𝟐 𝐕 > 𝟑𝟕𝟒. 𝟔𝟗 𝐕

Como se puede observar la tensión de malla es mayor que la tensión de toque, por lo

que se debe de realizar un rediseño del sistema de puesta a tierra.

5.3.14 Rediseño del sistema.

Antes de empezar a realizar el nuevo diseño, se debe verificar que la longitud del

conductor de la red es menor que la longitud mínima requerida, esto es para que la

tensión máxima de malla sea menor que la tensión de toque, esto será empleando al

ecuación (3.34).

Lcmin =ρ Km Ki Ig ts

157 + 0.235 Cs ρs

=45 0.171 2.124 25x103 0.2

157 + 0.235 1 45 = 𝟏𝟎𝟗𝟎.𝟒𝟗 𝐦

1090.49 m >> 200 m

Page 110: Sistema de puesta a tierra de tanques Con Productos Inflamables

109

Analizando los resultados, se puede ver que la longitud calculada es mucho mayor a la

longitud mínima del conductor, esto representa un gran costo en la instalación del

sistema, si se ve desde una parte económica.

Por lo tanto es recomendable utilizar un método diferente, el cual consiste en colocar

una capa de grava moran de 15 cm de espesor sobre la superficie del sistema, esta capa

tiene una resistividad de 3000 Ω-m.

Utilizando la ecuación (3.12) se tiene:

Cs = 1 −

0.09 1 −

ρρ

s

2 hs + 0.09

= 1 −

0.09 1 −

453000

2(0.15) + 0.09

= 𝟎. 𝟕𝟕𝟐

Hecho esto se procede a calcular nuevamente la tensión de toque.

Etoque 70 kg = 1000 + 1.5Csρs 0.157

ts

= 1000 + 1.5 0.772 3000 0.157

0.2

= 𝟏𝟓𝟔𝟓. 𝟗 𝐕

Cálculo de la tensión de paso:

Epaso 70 kg = 1000 + 6 Cs ρs

0.157

ts

= 1000 + 6 0.772 3000 ∗ 0.157

0.2

= 5213.6 V

Si no se modifican las dimensiones de las mallas ni el número de conductores para el eje X y el eje Y, se tiene que.

Eje X

Eje Y=

10 m

10 m= 𝟏

Por lo que tentativamente se consideran 10 mallas en eje X y 10 mallas en el eje Y; y

para calcular la separación entre conductores se emplea la siguiente ecuación:

D =2 l1 l2

L − l1 − l2 (5.1)

Donde:

Page 111: Sistema de puesta a tierra de tanques Con Productos Inflamables

110

D= Separación entre conductores (m).

l1= Largo de la red (m).

l2= Ancho de la red (m).

L= longitud total (m).

L = (# de conductores en X ) Eje X + # de conductores en Y Eje Y .

Realizando la ecuación (5.1), teniendo en cuenta que tentativamente esta es la longitud

total de la red, se tiene que:

Lc = 10 10 + 10 10 = 𝟐𝟎𝟎 𝐦.

Pero en este caso no se debe de olvidar que se está contemplando la longitud de los

electrodos, por lo que la longitud total es:

Lt = Lc + LR = 200 + 86varillas 3 m = 𝟒𝟓𝟖 𝐦

Nota: Se proponen 86 electrodos, para reducir la tensión máxima de malla, puesto que si este número de electrodos variaba 30-76, la última condición no se cumplirá.

D =2 l1 l2

Lc − l1 − l2=

2 10 10

200 − 10 − 10= 𝟏. 𝟏𝟏𝐦

Se calcula nuevamente la resistencia de la red considerando la nueva longitud total.

Rg = ρ

1

Lt

+1

10A

1 +1

1 + h 20A

= 45

1

458+

1

10 100

1 +1

1 + 0.5 20

100

= 2.61 Ω

Recordando que la dimensión de la malla y el número de conductores en los ejes no se modifico, el valor de “n” permanece idéntico.

Page 112: Sistema de puesta a tierra de tanques Con Productos Inflamables

111

na =2 Lc

Lp

=2 200

40= 𝟏𝟎

nb = 𝟏; nc = 𝟏; nd = 𝟏

n = na nb nc nd = 10 1 1 1 = 𝟏𝟎

Los valores que se utilizaron para el cálculo del factor de espaciamiento para la tensión de la malla son los mismos, a excepción de Kii =1.

Km =1

2π ln

D2

16 h dr +

D + 2h 2

8 D dr −

h

4dr

+Kii

Kh

ln 8

π 2n − 1

= 1

2π ln

1.11 2

16 0.5 0.0734 +

1.11 + 2 0.5 2

8 1.11 0.0734 −

0.5

4 0.0734 +

1

1.22ln

8

π 2 10 − 1

= 0.050 V

Se calcula el valor del factor de corrección por geometría.

Ki = 0.644 + 0.148 n = 0.644 + 0.148 10 = 𝟐. 𝟏𝟐𝟒

Cálculo de la tensión máxima de la malla.

Pero con una modificación ya que se emplearan varillas en las esquinas o a largo del

perímetro, por lo que la tensión de malla es:

Emalla =ρ Ig Km Ki

Lc +

1.55 + 1.22

Lr

Lx 2 + Ly 2

∗ LR

=45 25x103 0.050 2.124

200 + 1.55 + 1.22 3

10 2 + 10 2 ∗ 86 3

= 𝟏𝟕𝟗. 𝟐𝟔

Page 113: Sistema de puesta a tierra de tanques Con Productos Inflamables

112

Nuevamente se comparan las tensiones.

𝐄𝐦𝐚𝐥𝐥𝐚 < 𝐄𝐭𝐨𝐪𝐮𝐞

179.26 V < 1565.9 V

Longitud Mínima de Red.

Con este paso se verifica que la longitud total de la red propuesta sea mayor que la

longitud mínima requerida.

Lcmin =ρ Km Ki Ig ts

157 + 0.235 Cs ρs

=45 0.050 2.124 25x103 0.2

157 + 0.235 0.772 3000 = 𝟕𝟔. 𝟗 𝐦

𝐋𝐜𝐚𝐜𝐥𝐮𝐥𝐚𝐝𝐚 < 𝐋 𝐩𝐫𝐨𝐩𝐮𝐞𝐬𝐭𝐚

76.9 m < 200 m

Como se puede ver, la longitud del conductor de la red es menor a la que se propuso, se

puede seguir con el procedimiento de diseño.

Ahora se calcula la longitud efectiva de los conductores de la red.

Ls = 0.75 Lc + 0.85 LR = 0.75 200 + 0.85 258 = 𝟑𝟔𝟗. 𝟑 𝐦

Factor de espaciamiento para la tensión de paso.

Si se considera un potencial de paso a un meto fuera de la esquina, más alejada de la

red y al conductor enterrado a un profundidad de 0.5 m, se tiene que:

Ks =1

π

1

2 h +

1

D + h+

1

D 1 − 0.5n−2

=1

π

1

2 0.5 +

1

1.11 + 0.5+

1

1.11 1 − 0.510−2

= 0.79

Page 114: Sistema de puesta a tierra de tanques Con Productos Inflamables

113

Se calcula la tensión de paso máxima de la red.

Es =ρ Ks Ki Ig

Ls

=45 0.79 2.124 25x103

369.3= 𝟓𝟏𝟏𝟏.𝟓𝟕 𝐕

𝐄𝐬 < 𝐄𝐩𝐚𝐬𝐨 𝟕𝟎 𝐤𝐠

5111.57 V < 5213.6 V

La tabla 5.1 muestra el análisis de resultados del diseño final.

Tabla 5.1 Resultados tentativos del diseño.

E (Malla). E (Toque).

179.26 V 1565.9 V

E (Máxima de Red). E (Paso).

5111.57 V 5213.6 V

L (Calculada). L (propuesta).

76.9 m 200 m

Se debe aclarar que este no es el paso final; más bien es para comprobar que realmente

el procedimiento es tentativamente el correcto.

Page 115: Sistema de puesta a tierra de tanques Con Productos Inflamables

114

5.4 Corrida del programa CALIXTO-87.

En primera instancia se debe especificar que los datos que se emplearán para el cálculo

del nivel de protección y el diseño del sistema de puesta a tierra, son los mismos que se

utilizaron en el ejemplo analítico. Se ejecuta el programa, en primera instancia, se

proporcionan la altura y la densidad de descargas eléctricas, según la zona en la que se

encuentre instalado el tanque.

Ya ingresado esos primeros datos se desplegaran una serie de listados, que darán

múltiples opciones, estas opciones son en qué condiciones se encuentra el tanque y

demás.

Page 116: Sistema de puesta a tierra de tanques Con Productos Inflamables

115

Page 117: Sistema de puesta a tierra de tanques Con Productos Inflamables

116

Una vez que el usuario a terminado de elegir las opciones que se presentan en los

listados, el programa determina si es o no necesario implementar el sistema de

protección, en este caso si fue necesario implementarlo. Como es necesario implementar

el sistema, el programa pedirá al usuario la resistencia promedio del terreno y la

profundidad a la que estará la malla, como a continuación se muestra:

Hecho lo anterior, se despliegan los resultados, en los cuales están el nivel de protección

necesario y las características del sistema de puesta a tierra.

Page 118: Sistema de puesta a tierra de tanques Con Productos Inflamables

117

La tabla 5.1 muestra la comparación entre los resultados analíticos y los resultados obtenidos mediante el programa CALIXTO-87.

Tabla 5.1 Resultados obtenidos analíticamente y con el programa CALIXTO-87.

UNE 21,186

Símbolo

Descripción

Resultados Analíticos.

Resultados del

Programa

U.M Cantidad U.M Cantidad

Ae Superficie de Captura

m2 5541,76 m2 5541,8

Nd Selección del Coeficiente de la estructura ********** 0,024 ********* 0,024

Nc Frecuencia aceptable de rayos sobre el tanque ********** 0,006 ********* 0,006

E Eficiencia de la protección

********** 0,75 ********* 0,75

Nivel de

protección

********** III ********* III

IEEE STD 80-2000

A Área del sistema de puesta a tierra

m2 100 m2 100

I Corriente del rayo

KA 25 KA 25

tf Duración de la corriente de rayo

s 0,2 s 0,2

Ar Calibre del conductor

mm2 39,28 (1) mm2 39,09

E toque Tensión de toque

V 374,69 V 374,75

E paso Tensión de paso

V 445,77 V 445,84

Lt longitud del conductor

m 200 m 200

D Distancia de los conductores

m 1,11 m 1,11

Rg Resistencia de la red

Ω-m 2,76 Ω-m 2,81

n Factor geométrico

********** 10 ********* 10

h Profundidad de la malla

m 0,5 m 0,5

Page 119: Sistema de puesta a tierra de tanques Con Productos Inflamables

118

Km Factor de espaciamiento

V 0,171 V 0,17

Ki Factor de corrección por geometría

********** 2,124 ********* 2,124

Em Tensión de malla máxima

V 2043,2 V 2039,2

Comparación de las tensiones de E malla vs E toque.

2043,02 V > 374,69 V

Rediseño del Sistema de Puesta a Tierra.

Símbolo Descripción

Resultados Analíticos.

Resultados del

Programa.

U.M Cantidad U.M Cantidad

ρs Resistividad de la roca triturada

ῼ-m 3000 ῼ-m 3000

Cs Factor de la capa superficial

********** 0,772 ********* 0,77

E toque Tensión de toque

V 1565,9 V 1571,17

E paso Tensión de paso

V 5213,6 V 5233,8

D Distancia de los conductores

m 1,11 m 1,11

Lt Longitud total de la red

m 458 m 458

Rg Resistencia de la red

ῼ 2,61 ῼ 2,68

n Factor geométrico

********* 10 ********* 10

Km Factor de espaciamiento

V 0,05 V 0,05

Ki Factor de corrección por geometría

********** 2,124 ********* 2,124

Em Tensión de malla

V 179,26 V 179,21

Comparación de las tensiones de E malla vs E toque.

179,26 V < 1565,9 V Lm Longitud mínima de la red

m 76,9 m 79,6

Ls Longitud efectiva de los conductores de la red m 369,3 m 369,3

Ks Factor de espaciamiento

********** 0,79 ********* 0,8

Es Tensión de paso máxima de la red

V 5111,57 V 5184,3

Page 120: Sistema de puesta a tierra de tanques Con Productos Inflamables

119

El sistema tendrá una apariencia como lo muestra la Fig. 5.1, en la cual se puede

apreciar el sistema de blindaje y el sistema de puesta a tierra.

Fig. 5.1 Muestra el sistema de protección físico para el tanque de almacenamiento.

Page 121: Sistema de puesta a tierra de tanques Con Productos Inflamables

120

CONCLUSIONES

Se puede concluir que este sistema puede ser implementado para la protección de los

tanques de almacenamiento de productos inflamables, sin importar de qué tipo de

tanque se trate, como se puede verificar no hay una norma que describa el diseño del

sistema de tierras para los pararrayos, ya que la NORMA UNE 21.186 solo hace

pequeñas referencias acerca de ello, es por eso que en este trabajo se propuso el diseño

empleando la NORMA IEEE 80-2000.

Teóricamente es viable implementar este sistema, pero aun es necesario realizar

pruebas de laboratorio y campo, para verificar la efectividad de este sistema; no

obstante se dejan bases cimentadas para que el estudio continúe, puesto como se

planteo en la justificación, el daño a los tanques por descargas atmosféricas no solo es

un problema que se presenta en nuestro país sino a nivel mundial y una de las

propuestas que se tienen, es la de implementar el sistema desarrollado a lo largo de este

trabajo.

Por tal motivo, se puede concluir que cada tanque debe de tener su propio sistema de

protección, en base a sus grandes dimensiones, características de forma y construcción;

no es viable tratar de implementar una protección para un patio de tanques, por que

como se expuso con anterioridad las dimensiones son considerables, y además los

radios de protección de los pararrayos en la actualidad no son capases de cubrir toda

esta área.

El único inconveniente encontrado a lo largo de este estudio es que este sistema es

viable, siempre y cuando se realice antes de la construcción de los tanques, ya que si se

realiza con tanques en funcionamiento, resultaría un gran inconveniente, por que como

se sabe, para realizar el S.P.T, se deben hacer perforaciones en el suelo para contener a

la malla, y si en dado caso no son tomadas la medidas de seguridad pertinentes, en el

peor de los casos se tendría una perforación de un tanque causando una catástrofe,

además aun contando con las medidas necesarias y el equipo adecuado para laborar

cerca del tanque, los servicios que este proporciona tendrían que ser suspendidos en

lapsos de tiempos no muy largos, para evitar pérdidas económicas.

El programa que fue desarrollado con el objeto de cumplir uno de los puntos de esta

tesis, puede ser de gran ayuda para la industria petrolera, ya que pude agilizar el cálculo

del nivel de protección y las características del sistema de tierras, dando un nuevo

campo de aplicación para la Ingeniería Eléctrica, además de que puede ser ejecutado en

computadoras de escritorio y portátiles, esta ultima da la opción de que el programa

pueda ser ejecutado en campo.

Page 122: Sistema de puesta a tierra de tanques Con Productos Inflamables

121

Anexos

Page 123: Sistema de puesta a tierra de tanques Con Productos Inflamables

122

ANEXOS.

Teorías sobre la formación de una descarga eléctrica.

La explicación de cómo es formada una descarga eléctrica atmosférica es variada, esto

es porque existen diferentes teorías que dan una explicación hacia este fenómeno,

siendo todas validas para el objeto de estudio [2].

Teoría de Simpson.

La teoría propuesta por Simpson es aceptable en el campo científico, ya que esta se

fundamenta en experimentos de laboratorio.

Manifiesta que la formación de cargas eléctricas en las nubes se debe a corrientes de

aire presentes dentro de la nuebe; las corrientes ascendentes de aire transportan vapor

húmedo del mar o de la superficie de la tierra, este vapor al encontrarse a una

determinada altura y bajo condiciones atmosféricas propicias se condensa

transformándose en gotas de agua.

Cuando las gotas adquieren una dimensión y peso considerable caen sobre la superficie

de la tierra por gravedad en forma de lluvia; en el trayecto de la caída estas gotas se

encuentran con corrientes ascendentes, que provocan un rompimiento en las gotas de

lluvia, esto genera que dichas gotas se dividan en gotas más pequeñas, de esta forma se

crea un ciclo repetitivo, este ciclo desprende los iones negativos que son dispersados en

la atmosfera; de igual forma son llevadas hacia arriba las gotas positivas fraccionadas

por las corrientes de aire, donde a determinada altura se unen entre ellas formando gotas

más grandes y posteriormente caer en forma de lluvia nuevamente.

Cuando las gotas llegan a la zona de vientos fuertes aumenta su carga positiva

desintegrándose nuevamente, en la siguiente figura se puede apreciar la distribución de

las cargas en la nube según Simpson; la parte inferior de la nube logra una temperatura

de 4ºC, en tanto que la parte superior alcanza una temperatura de -32ºC, estos gradientes

de temperatura son fundamentales para la formación de la descarga eléctrica [2].

Fig. 1.4 Nube según Simpson con alturas y temperaturas usuales.

Page 124: Sistema de puesta a tierra de tanques Con Productos Inflamables

123

Teoría de Elster y Geitel.

Esta también es conocida como la teoría de la influencia eléctrica; plantea que en la

nube existen gotas de gran volumen y otras de pequeño volumen; donde las de mayor

volumen se precipitan y como sabemos caen a las superficie de la tierra en forma de

lluvia, mientras que las de menor volumen son llevadas por las corrientes de aire hacia

la parte superior de la nube. Dichas gotas son polarizadas por el campo eléctrico que

tienen, cuyo gradiente en la superficie es de 100 V/m, una vez polarizada, las cargas

positivas se colocan la parte inferior de la gota, en tanto que las cargas negativas se

depositan en la parte superior. La gota cargada en su caída se encuentra con corrientes

ascendentes de aire, produciendo una reducción de tamaño y generando un intercambio

de cargas. La carga positiva predomina en las gotas pequeñas, mientras que en las gotas

de mayor volumen predominan las cargas negativas, esto genera que estas dos gotas se

mueven en diferentes direcciones; por lo tanto en la nube se almacenan cargas positivas

en la parte inferior y cargas negativas en la parte superior [2].

Fig. 1.5 Gota de lluvia según Elster y Greitel.

Teoría de Wilson.

Es también conocida como la ionización de la gota de lluvia, de igual manera que en la

teoría de Elster y Geitel asume que el campo eléctrico influye en la ionización de la

gota, con la diferencia de que Wilson asume que en la atmosfera existen una gran

cantidad de pequeños iones negativos y positivos que se mueven en diferentes

direcciones, con una velocidad de 1 m/s bajo la acción de un campo eléctrico con un

valor de 1V/m.

Como ya se sabe la gota está cargada en su parte superior por iones negativos y en la

parte inferior por iones positivos, entonces la corriente sumada con los iones

dispersados en la atmosfera, provocan que los iones positivos de la atmosfera o dentro

de la nube atraigan a los iones negativos de la gota, al mismo tiempo que los iones

positivos tanto de la atmosfera como los de la gota de agua se repelen y son

transportados por el aire a la parte superior de la nube, escapando de la atracción

superior de la gota, que continúa descendiendo con carga negativa.

La nube entonces, tiene carga negativa en la parte media inferior y en la parte media

superior tiene una carga positiva, la siguiente figura muestra una gota según la teoría de

Wilson [2].

Page 125: Sistema de puesta a tierra de tanques Con Productos Inflamables

124

Fig. 1.5 Imagen de una gota según Wilson.

Teoría de K. Berger.

La descarga atmosférica o caída de un rayo depende del sentido de desarrollo que la

nube puede descargar su parte positiva o su parte negativa (fig. 9). En un terreno

despejado (llano) la caída de un rallo es descendente o dicho de otra manera a partir de

la nube.

En montaña o en presencia de una prominencia importante (torres elevadas o chimeneas

de fabricas), lo más probable es que se produzcan una caída de rayo ascendente, que es

altamente peligrosa, sobre todo la de tipo positivo [2].

Teoría de Schonland.

1. La caída del rayo comienza por un trazador, el cual se desarrolla en la nube y

este progresa en saltos de 30-50 m hacia el suelo. El trazador está compuesto

por partículas arrancadas de la nube por el campo eléctrico nube-tierra; dichas

partículas forman un canal luminoso hacia el suelo.

2. Lo anterior favorece la creación de un canal ionizado, el cual se ramifica; una

vez que este se encuentra a 300 m del suelo, se generan efluvios o chispas que

salen del suelo y uno de ellos entra en contacto con la punta del trazador.

3. Aparece un arco eléctrico muy luminoso, el cual provoca la aparición del

trueno, esto permite el intercambio de las cargas del condensador nube-tierra.

4. Por último se crea una sucesión de arcos subsecuentes cada vez menos intensos.

En la siguiente grafica presentamos la descarga negativa descendente de un rayo [2].

Fig. 1.6 Imagen que muestra la caída del rayo negativa descendente (Sustraído de La

protección contra el rayo gama PF/PE Merlin Gerin).

Page 126: Sistema de puesta a tierra de tanques Con Productos Inflamables

125

Código del programa CALIXTO-87.

clear all, clc;

disp(' Programa CALIXTO-87')

disp(' Instituto Politécnico Nacional')

disp(' Escuela Superior de Ingeniería Mecánica y Eléctrica')

disp(' Unidad Zacatenco')

fprintf('\n')

disp('A continuación usted ingresara los valores de la superficie de captura')

fprintf('\n')

fprintf('\n')

h=input('Altura del tanque=');

fprintf('\n')

Ae=9*pi*(h^2);%Calculo de la Superficie de Captura Equivalente

Ng=input('Ingrese el valor de la densidad anual de impactos de rayos en la región

(impacto/ano*km2)=');

fprintf('\n')

%Selección del coeficiente de la situación de la estructura

disp(' A continuación se mostraran la situaciones relativas a la estructura')

fprintf('\n')

disp('Oprima (1), Si se trata de un área de tanques con la misma altura o arboles de la

misma altura u/o con un altura superior al tanque')

fprintf('\n')

disp('Oprima (2), Si el tanque está rodeado de tanques con menor altura')

fprintf('\n')

disp('Oprima (3), Si se trata de un tanque aislado')

fprintf('\n')

disp('Oprima (4), Si el tanque es aislado y esta sobre una colina')

fprintf('\n')

opcion=input('Ingrese el número de la opción=');

Page 127: Sistema de puesta a tierra de tanques Con Productos Inflamables

126

fprintf('\n')

if (opcion==1)

C1=0.5;

end

if(opcion==2)

C1=0.75;

end

if(opcion==3)

C1=1;

end

if(opcion==4)

C1=2;

end

Nd=(Ng*1.1)*(Ae*C1*1e-6);%cálculo de la frecuencia anual media de impactos de

rayo.

disp('Lo siguiente a realizar es el cálculo de la frecuencia aceptable de rayos (Nc)')

fprintf('\n')

%Decisión y cálculo del coeficiente (c).

C2=2; %Esto debido a que es una estructura de metal-inflamable.

fprintf('\n')

fprintf('\n')

disp(' A continuación se dará una lista de qué tipo de contenido tiene el

tanque')

fprintf('\n')

disp('Oprima (1), Si el contenido no es inflamable')

fprintf('\n')

disp('Oprima (2), Si el contenido es normalmente inflamable')

fprintf('\n')

disp('Oprima (3), Si el contenido es particularmente inflamable')

fprintf('\n')

Page 128: Sistema de puesta a tierra de tanques Con Productos Inflamables

127

disp('Oprima (4), Si el valor es muy inflamable o explosivo')

fprintf('\n')

contenido=input('Ingrese su elección=');

if(contenido==1)

C3=0.5;

end

if(contenido==2)

C3=2;

end

if(contenido==3)

C3=5;

end

if(contenido==4)

C3=10;

end

fprintf('\n')

fprintf('\n')

disp(' A continuación se muestra una lista para saber qué tipo de ocupación

tiene el tanque')

fprintf('\n')

disp('Oprima (1), Si la ocupación sobre el área del tanque es nula')

fprintf('\n')

disp('Oprima (2), Si el área del tanque es ocupada normalmente')

fprintf('\n')

disp('Oprima (3), Si el área es de difícil evacuación o con alto riesgo de pánico')

fprintf('\n')

ocupacion=input('Cual es el tipo de ocupación de dicha área=');

if(ocupacion==1)

C4=0.5;

end

Page 129: Sistema de puesta a tierra de tanques Con Productos Inflamables

128

if(ocupacion==2)

C4=3;

end

if(ocupacion==3)

C4=7;

end

fprintf('\n')

fprintf('\n')

disp(' La siguiente lista es para elegir una opción acerca de la consecuencia

sobre el entorno')

fprintf('\n')

disp('Oprima (1), Sin necesidad de continuidad en el servicio')

fprintf('\n')

disp('Oprima (2), Necesidad de continuidad en el servicio')

fprintf('\n')

disp('Oprima (3), Con consecuencia sobre el entorno')

fprintf('\n')

entorno=input('Elija la opción=');

fprintf('\n')

if(entorno==1)

C5=1;

end

if(entorno==2)

C5=5;

end

if(entorno==3)

C5=10;

end

%Cálculo de la frecuencia establecida de impactos sobre una estructura.

C=(C2*C3)*(C4*C5);

Page 130: Sistema de puesta a tierra de tanques Con Productos Inflamables

129

Nc=3e-3/C;

if(Nd<=Nc)

disp('La protección no es necesaria, gracias por utilizar CALIXTO-87, que tenga

buen día')

end

if(Nd>Nc)%If principal

disp('Protección Necesaria')

fprintf('\n')

E=1-(Nc/Nd);

%Cálculo de la eficiencia

if(E>0.99)

ejex=5;%longitud de la malla en el eje X.

ejey=5;%longitud de la malla en el eje Y.

l=5;

ele=86; %Numero de electrodos.

longitud=3;

fprintf('\n')

end

if(0.95<E&E<=0.99)

ejex=5;%longitud de la malla en el eje X.

ejey=5;%longitud de la malla en el eje Y.

l=5;

ele=86; %Numero de electrodos.

longitud=3;

fprintf('\n')

end

if(0.80<E&E<=0.95)

ejex=10;%longitud de la malla en el eje X.

ejey=10;%longitud de la malla en el eje Y.

Page 131: Sistema de puesta a tierra de tanques Con Productos Inflamables

130

l=10;

ele=86; %Numero de electrodos.

longitud=3;

end

if(0<E&E<=0.80)

ejex=10;%longitud de la malla en el eje X.

ejey=10;%longitud de la malla en el eje Y.

l=10;

ele=86; %Numero de electrodos.

longitud=3;

end

%Cálculo del Sistema de Puesta a Tierra.

%tomando en cuenta que la corriente de descarga es mucho menor para el

%diseño del S.P.T tomaremos la corriente de C.C de 25 KA que corresponde

%a una tensión de 23 KV.

%tomando los valores del cobre.

%cálculo de la sección transversal del cobre.

I=25;

Icc=25e3;

Cs=1;

fprintf('\n')

disp('Como se trata de un S.P.T el Material que será utilizado es Cobre, en este caso los

valores ya están predeterminados para cualquier cálculo')

dr=0.00381;%Coeficiente de resistividad térmica de referencia T_r (1/ºC).

tcap=3.42;%Capacidad térmica por unidad obtenida en la tabla 3.4 en j/cm^3/ºC.

tr=20;%Temperatura de referencia para las constantes del material (ºC)

K=242;%1/?_0 o también K_0= (1/?_r )-T_r (ºC).

tm=1084;%Temperatura máxima permisible del material (ºC).

Page 132: Sistema de puesta a tierra de tanques Con Productos Inflamables

131

ror=1.78;%Resistividad del conductor de tierra a la temperatura de referencia T_r (??-

cm).

tm=1084;%Temperatura máxima permisible del material (ºC).

tf=0.2;%Tiempo de duración de la corriente (segundos).

%Suponiendo que tenemos una corriente de 25 KA.

disp('A continuación se darán y desplegaran los datos para el cálculo del S.P.T')

fprintf('\n')

R=input('Ingrese le valor de resistencia promedio del terreno=');

fprintf('\n')

h=input('Profundidad de la malla=');

fprintf('\n')

%En esta línea se realizará el cálculo del calibre del conductor que se

%necesita.

Ar=I/sqrt(((tcap*1e-4)/(tf*dr*ror))*log((K+tm)/(K+tr)));

fprintf('\n')

%Condiciones para los calibres.

if(Ar>35|Ar==42.4)

area=42.4;

calibre=1;

end

if(Ar>42.5|Ar==53.5)

area=53.5;

calibre=1/0;

end

if(Ar>53.6|Ar==67.4)

area=67.4;

calibre=2/0;

end

if(Ar>67.5|Ar==85)

area=85;

Page 133: Sistema de puesta a tierra de tanques Con Productos Inflamables

132

calibre=3/0;

end

if(Ar>85.1|Ar==107)

area=107;

calibre=4/0;

end

%Se determina las tensiones de toque y paso pata una persona de 70 Kg.

Cs=1;%por no contar con una capa superficial.

ts=0.2;

Etoque=(1000+(1.5*Cs*R))*(0.157/sqrt(ts));

Epaso=(1000+(6*Cs*R))*(0.157/sqrt(ts));

%Determinación de la Longitud del Conductor.

eje=ejex/ejey;

lt=(ejex*l)+(ejey*l);

D=(2*l*l)/(lt-l-l);

if(ejex==5&ejey==5)%condición para determinar el número de mallas.

%disp('El número de mallas en el eje X y Y será de 5');

lx=5;%Numero de Mallas en el eje X

ly=5;%Numero de Mallas en el eje Y

A=lx*ly;%Área de la malla.

end

if(ejex==10&ejey==10)

%disp('El número de mallas en el eje X y Y será de 10');

lx=10;%Numero de Mallas en el eje X

ly=10;%Numero de Mallas en el eje Y

A=lx*ly;

end

%Cálculo de la resistencia de la red.

Page 134: Sistema de puesta a tierra de tanques Con Productos Inflamables

133

R1=1+(1/(1+(0.5*sqrt(20/A))));

R2=1/sqrt(10*A);

R3=R1*R2;

rg=R*((1/lt)+R3);

%Cálculo del Número de Conductores Paralelos en la Malla.

lp=(2*l)+(2*l);

na=(2*lt)/lp;

nb=1;

nc=1;

nd=1;

n=na*nb*nc*nd;

%Cálculo del Factor de Espaciamiento para la Tensión de Malla.

Kii=1/[(2*n)^(2/n)];

Kh=sqrt(1+(h/1));

dr=(sqrt((4*area)/pi))/100;

%Cálculo del Factor de Espaciamiento para la Tensión de Malla.

Km1=(D^2)/(16*h*dr);

Km2=(D+(2*h))^2/(8*D*dr);

Km3=h/(4*dr);

Km4=log(Km1+Km2-Km3);

Km5=(Kii/1.22)*log(8/(pi*(2*n-1)));

Km=(1/(2*pi))*(Km4+Km5);

%Cálculo del Factor de Corrección por Geometría o de Irregularidad de la

%Red.

Ki=0.644+(0.148*n);

%Cálculo de la Tensión de Malla Máxima.

Em=(R*Km*Ki*Icc)/lt;

end%Fin del programa parte (I)

Page 135: Sistema de puesta a tierra de tanques Con Productos Inflamables

134

if (Em>Etoque)

disp('Como la tensión de malla máxima es mayor que la tensión de toque, se realizara

un rediseño')

%Se debe verificar que la longitud del conductor de la red es menor que la

%longitud mínima requerida.

Lc=(R*Ki*Icc*Km*sqrt(tf))/(157+(0.235*Cs*R));

fprintf('\n')

Rs=3000;%valor de la resistividad de la capa de grava.

hs=0.15;% Espesor de dicha capa expresado en m.

Cs1=0.09*(1-(R/Rs));

Cs2=(2*0.15)+0.09;

Cs3=1-(Cs1/Cs2);

%?Hecho esto se procede a calcular nuevamente la tensión de toque.

Etoque=(1000+(1.5*Cs3*Rs))*(0.157/sqrt(ts));

%?Calculo de la tensión de paso.

Epaso=(1000+(6*Cs3*Rs))*(0.157/sqrt(ts));

%?Si no modificamos las dimensiones de las mallas ni el número de

%conductores para el eje X y el eje Y, tenemos que.

Lc=lt+(ele*longitud);

%?Se calcula nuevamente la resistencia de la red considerando la nueva

% longitud total.

R1=1+(1/(1+(0.5*sqrt(20/A))));

R2=1/sqrt(10*A);

R3=R1*R2;

rg=R*((1/Lc)+R3);

%? Los valores que se utilizaron para el cálculo del factor de

%espaciamiento para la tensión de la malla son los mismos, a excepción de Kii =1.

Ki1=1;

Km11=(D^2)/(16*h*dr);

Km22=(D+(2*h))^2/(8*D*dr);

Page 136: Sistema de puesta a tierra de tanques Con Productos Inflamables

135

Km33=h/(4*dr);

Km44=log(Km11+Km22-Km33);

Km55=(Ki1/1.22)*log(8/(pi*(2*n-1)));

Km1=(1/(2*pi))*(Km44+Km55);

% Calculo de la tensión máxima de la malla.

Em1=(R*Km1*Ki*Icc);

Em2=1.22*(longitud/sqrt((lx^2)+(ly^2)));

Em3=1.55+Em2;

Em4=lt+[Em3*ele*longitud];

Em5=Em1/Em4;

%Comparación de la Em vs Etoque.

if (Em4<Etoque)

%? Longitud Mínima de Red.

Lc1=(R*Ki*Icc*Km1*sqrt(tf))/(157+(0.235*Cs3*Rs));

%? Ahora se calcula la longitud efectiva de los conductores de la red.

Ls=(0.75*lt)+(0.85*(ele*longitud));

%? Factor de espaciamiento para la tensión de paso.

Ks1=(1/D)*(1-(0.5^(n-2)));

Ks2=1/(D+h);

Ks3=1/(2*h);

Ks=(1/pi)*(Ks3+Ks2+Ks1);

%?Se calcula la tensión de paso máxima de la red.

Es=(R*Ks*Ki*Icc)/Ls;

end

disp(' ****DESPLIEGUE DE LOS RESULTADOS****')

fprintf('\n')

if(E>0.99)

disp('El nivel de protección para el tanque es (I)')

disp('Con una distancia de cebado de 20 m')

Page 137: Sistema de puesta a tierra de tanques Con Productos Inflamables

136

disp('Con una malla de 5x5')

end

if(0.95<E&E<=0.98)

disp('El nivel de protección para el tanque es (I)')

disp('Con una distancia de cebado de 20 m')

disp('Con una malla de 5x5')

end

if(0.80<E&E<=0.95)

disp('El nivel de protección para el tanques es (II)')

disp('Con una distancia de cebado de 45 m')

disp('Con una malla de 10x10')

end

if(0<E&E<=0.80)

disp('El nivel de protección para el tanques es (III)')

disp('Con una distancia de cebado de 60 m')

disp('Con una malla de 10x10')

end

fprintf('El calibre del conductor es de= %d AWG', calibre)

fprintf('\n')

fprintf('La tensión de toque es de= %d V',Etoque)

fprintf('\n')

fprintf('La tensión de paso es de= %d V',Epaso)

fprintf('\n')

fprintf('La separación entre conductores es de= %d m',D)

fprintf('\n')

fprintf('La resistencia de la red es de= %d ?',rg)

fprintf('\n')

fprintf('La tensión de malla es de= %d V',Km1)

fprintf('\n')

Page 138: Sistema de puesta a tierra de tanques Con Productos Inflamables

137

fprintf('La tensión máxima de malla es de= %d V',Em5)

fprintf('\n')

fprintf('La longitud máxima de la red es de= %d m',Lc1)

fprintf('\n')

fprintf('La tensión máxima de la red es de= %d V',Es)

fprintf('\n')

if(Lc>lt)

fprintf('\n')

fprintf('\n')

disp('Nota: Como la longitud de los conductor es mucho mayor que la propuesta')

disp('Por lo tanto es recomendable utilizar un método diferente,')

disp('el cual consiste en colocar una capa de grava moran de 15 cm de espesor sobre la

superficie del sistema')

disp(',esta capa tiene una resistividad de 3000 ohms*m.')

end

Page 139: Sistema de puesta a tierra de tanques Con Productos Inflamables

138

REFERENCIAS BIBLIOGRÁFICAS.

[1] G. Enríquez Harper, “Estudio de Sobretensiones en Sistemas Eléctricos y

Coordinación de Aislamiento”, Edit. Limusa, México, 1978.

[2] La protección contra el rayo gama PF/PE Merlín Gerin (Guía Técnica), México

D.F, Schneider Electric S.A.

[3] Presentación del Ing. Carlos López Vásquez (Bayer Technology Servicies), México

D.F, Febrero 2008.

[4]Sistemas de Puesta a Tierra. (http://www.ruelsa.com/notas/tierras/pe50.html),

México D.F, 2011.

[5] Protección Contra Descargas Atmosféricas, Ing. Eduardo García Mc Pherson-

Santiago de Querétaro, Qro. 2005.

[6] Sistema de Puesta a Tierra, México D.F, 2006, Ing. Alfredo Juárez Torres.

[7] Publicaciones de nuevas tecnologías, lugar de procedencia México D.F:

http://www.rbitem.com/ITEM_Publications/ITEM_Archives/u97art07.htm

[8] Documento de supresores Principio de funcionamiento y tipo de supresores, Ing.

Héctor H. Lozano Guerra, México D.F, 2010.

[9] Sustraído http://www.ipl.com.co/supresores.htm, México D.F, 2011.

[10] Sistema de pararrayos 1 (Procobre I.C.A).

[11] Presentación de Protección Contra Descargas Eléctricas Atmosféricas.

[12] Copyright © 2006 GZ Ingeniería Bogotá, D.C. COLOMBIA

[13] Articulo: “Pararrayos CTS y CEC”, Autor: Ángel Rodríguez Montes Director Gerente INT, México D.F

[14] Tríptico proporcionado por la empresa INGESCOPR-2010-INGESCO, México

D.F.

[15] Uman, M. and Rakov. “A Critical Review of Nonconventional

Approaches to Lightning Protection”. BAMS, American Meteorological

Society, Diciembre 2002.

[16] Cooray, V., Rakov, V., Theethayi, N., “The lightning striking distance -

Revisited”, Journal of Electrostatics, Nr. 65 (2007) 296-306,

www.sciencedirect.com.

[17] Report of the Federal Interagency Lightning Protection User Group.”The Basis of

Conventional Lightning Protection Technology” Junio 2001.

[18] Norme Française “Protection des structures et des zones ouvertes contre

la foudre par paratonnerre á dispositif d’amorçage” Norme Francaise NF

Page 140: Sistema de puesta a tierra de tanques Con Productos Inflamables

139

C 17-102, Julio, 1995.

[19] Aplicaciones Tecnológicas S. A. Folleto del dispositivo Ion-Corona

DAT-CONTROLER. Folleto comercial.

[20] Catalogo LEC de México Dispositivo de Puesta a Tierra Retráctil (Retractable

Grounding Assembly RGA).

[21] “Protección contra descargas eléctricas atmosféricas para aéreas de

almacenamiento de productos inflamables”, Roy B. Carpenter Jr.

[22] “Almacenaje de Fluidos”, Texto científico, México D.F 2008.

[23] Tesis: “Diseño de Tierras para Subestaciones Eléctricas y su Aplicación”, IPN,

Ing. José de Jesús Orozco Valle.

[24] Tesis:”Propuesta de Diseño del Sistema de Puesta a Tierra y Medición de

Resistencia a Tierra de la Subestación las Fresas Banco I”, IPN, Ing. Juan Carlos Nava

Palacios.

[25] NRF-011-CFE-2004,”Sistemas de Tierra para Plantas y Subestaciones Eléctricas”.

[26] NORMA UNE 21.186, “Protección de Estructuras, Edificaciones y Zonas Abiertas

mediante Pararrayos con Dispositivo de Cebado”.

[27] “Elementos de Diseño se Subestaciones Eléctricas”, Segunda edición, Enrique

Harper, Limusa Noriega Editores.

[28] NFR-015-PEMEX-2003.

[29] DYCTA, “Diseño y Calculo de Tanques de Almacenamiento”

[30] Página: http://www.isiven.com/presentaciones/cubiertas_flotantes.PDFson, México

D.F, 2011.

[31] Tesis: “Problemática de la Acumulación de Agua de Lluvia Sobre los Techos

flotantes de los Tanques de Almacenamiento de Crudo, en el Patio de Tanques del

Terminal de Embarque Puerto Miranda – PDVSA, Estado Zulia”; Ricardo A. Castillo

Urdaneta; Maracaibo, 08 de Septiembre de 2006.

[32] Presentación, “LLENADERAS”, PEMEX, México D.F. 2011.

[33] “Estudio de Sobretensiones Transitorias en Sistemas Eléctricos y Coordinación de

Aislamiento”, Limusa, Volumen II, G. Enríquez Harper, Segunda Edición.

[34] Proyecto de construcción de tanques cilíndricos verticales, Pemex, 2004.