Morfismos, Vol 17, No 2, 2013

Post on 02-Apr-2016

216 views2 download
SHARE

description

Morfismos issue for December 2013

transcript

  • VOLUMEN 17NMERO 2

    JULIO A DICIEMBRE 2013 ISSN: 1870-6525

  • Chief Editors - Editores Generales

    Isidoro Gitler zelaznoGsuseJ

    Associate Editors - Editores Asociados

    Ruy Fabila zednanreHleamsI amreL-zednanreHomisenO Hector Jasso Fuentes

    Sadok Kallel Miguel Maldonado Carlos Pacheco Enrique Ramrez de Arellano

    Enrique Reyes Dai Tamaki Enrique Torres Giese

    Apoyo Tecnico

    zehcnaSadnarAanairdA Irving Josue Flores Romero zelaznoGsetneuFoinotnAocraM oczorOzednanreHramO

    Roxana Martnez Laura Valencia

    Morfismos noicceridalneelbinopsidatse http://www.morfismos.cinvestav.mx.Para mayores informes dirigirse al telefono +52 (55) 5747-3871. Toda corres-

    -ametaMedotnematrapeD,aicnelaVaruaL.arSalaadigiridriebedaicnednopticas del Cinvestav, Apartado Postal 14-740, Mexico, D.F. 07000, o por correo

    :noicceridalaocinortcele morfismos@math.cinvestav.mx.

  • VOLUMEN 17NMERO 2

    JULIO A DICIEMBRE 2013ISSN: 1870-6525

  • noicacilbupanuse,3102erbmeicidaoiluj,2oremuN,71nemuloV,somsfiroMsodaznavAsoidutsEedynoicagitsevnIedortneCleropadatidelartsemes

    del Instituto Politecnico Nacional (Cinvestav), a traves del DepartamentoordePnaS.loC,8052.oNlanoicaNocincetiloPotutitsnI.vA.sacitametaMed,00837475-55.leT,.F.D,06370.P.C,oredaM.AovatsuGnoicageleD,ocnetacaZ

    www.cinvestav.mx, morfismos@math.cinvestav.mx, Editores Generales: Drs.sohcereDedavreseR.sorraBonipsEzelaznoGsuseJyreltiGorodisI

    No. 04-2012-011011542900-102, ISSN: 1870-6525, ambos otorgados por elInstituto Nacional del Derecho de Autor. Certificado de Licitud de TtuloNo. 14729, Certificado de Licitud de Contenido No. 12302, ambos otorga-

    aledsadartsulIsatsiveRysenoicacilbuPedarodacfiilaCnoisimoCalropsodledsacitametaMedotnematrapeDleroposerpmI.noicanreboGedaraterceS

    Cinvestav, Avenida Instituto Politecnico Nacional 2508, Colonia San PedronerimirpmiedonimretesoremunetsE.F.D,ocixeM,06370.P.C,ocnetacaZ

    febrero de 2014 con un tiraje de 50 ejemplares.

    Las opiniones expresadas por los autores no necesariamente reflejan la.noicacilbupaledserotidesoledarutsop

    -nocsoledlaicrapolatotnoiccudorperaladibihorpetnematcirtseadeuQlednoicazirotuaaiverpnis,noicacilbupaledsenegamiesodinet Cinvestav.

  • Information for Authors

    The Editorial Board of Morfismos calls for papers on mathematics and related areas tobe submitted for publication in this journal under the following guidelines:

    Manuscripts should fit in one of the following three categories: (a) papers covering thegraduate work of a student, (b) contributed papers, and (c) invited papers by leadingscientists. Each paper published in Morfismos will be posted with an indication ofwhich of these three categories the paper belongs to.

    Papers in category (a) might be written in Spanish; all other papers proposed forpublication in Morfismos shall be written in English, except those for which theEditoral Board decides to publish in another language.

    All received manuscripts will be refereed by specialists. In the case of papers covering the graduate work of a student, the author should

    provide the supervisors name and aliation, date of completion of the degree, andinstitution granting it.

    Authors may retrieve the LATEX macros used for Morfismos through the web sitehttp://www.math.cinvestav.mx, at Revista Morfismos. The use by authors of thesemacros helps for an expeditious production process of accepted papers.

    All illustrations must be of professional quality. Authors will receive the pdf file of their published paper. Manuscripts submitted for publication in Morfismos should be sent to the email ad-

    dress morfismos@math.cinvestav.mx.

    Informacion para Autores

    El Consejo Editorial de Morfismos convoca a proponer artculos en matematicas y areasrelacionadas para ser publicados en esta revista bajo los siguientes lineamientos:

    Se consideraran tres tipos de trabajos: (a) artculos derivados de tesis de grado dealta calidad, (b) artculos por contribucion y (c) artculos por invitacion escritos porlderes en sus respectivas areas. En todo artculo publicado en Morfismos se indicarael tipo de trabajo del que se trate de acuerdo a esta clasificacion.

    Los artculos del tipo (a) podran estar escritos en espanol. Los demas trabajos deberanestar redactados en ingles, salvo aquellos que el Comite Editorial decida publicar enotro idioma.

    Cada artculo propuesto para publicacion en Morfismos sera enviado a especialistaspara su arbitraje.

    En el caso de artculos derivados de tesis de grado se debe indicar el nombre delsupervisor de tesis, su adscripcion, la fecha de obtencion del grado y la institucionque lo otorga.

    Los autores interesados pueden obtener el formato LATEX utilizado por Morfismos enel enlace Revista Morfismos de la direccion http://www.math.cinvestav.mx. La uti-lizacion de dicho formato ayudara en la pronta publicacion de los artculos aceptados.

    Si el artculo contiene ilustraciones o figuras, estas deberan ser presentadas de formaque se ajusten a la calidad de reproduccion de Morfismos.

    Los autores recibiran el archivo pdf de su artculo publicado. Los artculos propuestos para publicacion en Morfismos deben ser dirigidos a la di-

    reccion morfismos@math.cinvestav.mx.

  • Editorial Guidelines

    Morfismos is the journal of the Mathematics Department of Cinvestav. Oneof its main objectives is to give advanced students a forum to publish their earlymathematical writings and to build skills in communicating mathematics.

    Publication of papers is not restricted to students of Cinvestav; we want to en-courage students in Mexico and abroad to submit papers. Mathematics researchreports or summaries of bachelor, master and Ph.D. theses of high quality will beconsidered for publication, as well as contributed and invited papers by researchers.All submitted papers should be original, either in the results or in the methods.The Editors will assign as referees well-established mathematicians, and the accep-tance/rejection decision will be taken by the Editorial Board on the basis of thereferee reports.

    Authors of Morfismos will be able to choose to transfer copy rights of theirworks to Morfismos. In that case, the corresponding papers cannot be consideredor sent for publication in any other printed or electronic media. Only those papersfor which Morfismos is granted copyright will be subject to revision in internationaldata bases such as the American Mathematical Societys Mathematical Reviews, andthe European Mathematical Societys Zentralblatt MATH.

    Morfismos

    Lineamientos Editoriales

    Morfismos, revista semestral del Departamento de Matematicas del Cinvestav,tiene entre sus principales objetivos el ofrecer a los estudiantes mas adelantadosun foro para publicar sus primeros trabajos matematicos, a fin de que desarrollenhabilidades adecuadas para la comunicacion y escritura de resultados matematicos.

    La publicacion de trabajos no esta restringida a estudiantes del Cinvestav; de-seamos fomentar la participacion de estudiantes en Mexico y en el extranjero, ascomo de investigadores mediante artculos por contribucion y por invitacion. Losreportes de investigacion matematica o resumenes de tesis de licenciatura, maestrao doctorado de alta calidad pueden ser publicados en Morfismos. Los artculos apublicarse seran originales, ya sea en los resultados o en los metodos. Para juzgaresto, el Consejo Editorial designara revisores de reconocido prestigio en el orbe in-ternacional. La aceptacion de los artculos propuestos sera decidida por el ConsejoEditorial con base a los reportes recibidos.

    Los autores que as lo deseen podran optar por ceder a Morfismos los derechos depublicacion y distribucion de sus trabajos. En tal caso, dichos artculos no podranser publicados en ninguna otra revista ni medio impreso o electronico. Morfismossolicitara que tales artculos sean revisados en bases de datos internacionales como loson el Mathematical Reviews, de la American Mathematical Society, y el ZentralblattMATH, de la European Mathematical Society.

    Morfismos

  • Special MIMS Proceedings Issue

    This issue is devoted to the proceedings of the conference Op-erads and Configuration Spaces that took place at the Mediter-ranean Institute for the Mathematical Sciences (MIMS), Cite desSciences, in Tunis capital city, June 1822, 2012. This conferencewas part of the launch of MIMS in the region. Plenary speak-ers gave a series of lectures that were attended by students andyoung researchers from Tunisia and Algeria. The MIMS thanksChristophe Cazanave, Jerey Giansiracusa, Paolo Salvatore, InesSaihi, Ismar Volic, Benjamin Walter, and all participants for mak-ing this a successful first conference. It also thanks Oscar-RandalWilliams for his special contribution.

    Este numero esta dedicado a las memorias de la conferenciaOperads and Configuration Spaces realizada en el MediterraneanInstitute for Mathematical Sciences (MIMS), Cite des Sciences, enla ciudad de Tunez, del 18 al 22 de junio de 2012. La conferenciafue parte de las actividades inaugurales del MIMS en la region.Los ponentes plenarios dieron una serie de conferencias a las queasistieron estudiantes e investigadores jovenes de Tunez y Argelia.El MIMS agradece a Christophe Cazanave, Jerey Giansiracusa,Paolo Salvatore, Ines Saihi, Ismar Volic, Benjamin Walter y todoslos participantes por hacer de esta primera conferencia un exito.Tambien agradece a Oscar-Randal Williams por su contribucionespecial.

  • Contents - Contenido

    Configuration space integrals and the topology of knot and link spaces

    Ismar Volic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    Topological chiral homology and configuration spaces of spheres

    Oscar Randal-Williams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    Cooperads as symmetric sequences

    Benjamin Walter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    Moduli spaces and modular operads

    Jerey Giansiracusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

  • Morfismos, Vol. 17, No. 2, 2013, pp. 156

    Configuration space integrals and the topologyof knot and link spaces

    Ismar Volic 1

    Abstract

    This article surveys the use of configuration space integrals in thestudy of the topology of knot and link spaces. The main focus isthe exposition of how these integrals produce finite type invari-ants of classical knots and links. More generally, we also explainthe construction of a chain map, given by configuration spaceintegrals, between a certain diagram complex and the deRhamcomplex of the space of knots in dimension four or more. A gen-eralization to spaces of links, homotopy links, and braids is alsotreated, as are connections to Milnor invariants, manifold calculusof functors, and the rational formality of the little balls operads.

    2010 Mathematics Subject Classification: 57Q45, 57M27, 81Q30, 57-R40.Keywords and phrases: configuration space integrals, Bott-Taubes inte-grals, knots, links, homotopy links, braids, finite type invariants, Vas-siliev invariants, Milnor invariants, chord diagrams, weight systems,manifold calculus, embedding calculus, little balls operad, rational for-mality of configuration spaces.

    Contents2noitcudortnI15repapehtfonoitazinagrO1.16seiranimilerP2

    2.1 Dierential forms and integration along the fiber 69stonkgnolfoecapS2.2

    1The author was supported by the National Science Foundation grant DMS1205786.

    1

  • 2 Ismar Volic

    2.3 Finite type invariants 102.4 Configuration spaces and their compactification 17

    3 Configuration space integrals and finite type knotinvariants 203.1 Motivation: The linking number 203.2 Self-linking for knots 223.3 Finite type two knot invariant 233.4 Finite type k knot invariants 30

    4 Generalization to Kn, n > 3 335 Further generalizations and applications 38

    5.1 Spaces of links 385.2 Manifold calculus of functors and finite typeinvariants 435.3 Formality of the little balls operad 48

    References 52

    1 Introduction

    Configuration space integrals are fascinating objects that lie at the inter-section of physics, combinatorics, topology, and geometry. Since theirinception over twenty years ago, they have emerged as an important toolin the study of the topology of spaces of embeddings and in particularof spaces of knots and links.

    The beginnings of configuration space integrals can be traced backto Guadagnini, Martellini, and Mintchev [19] and Bar-Natan [4] whosework was inspired by Chern-Simons theory. The more topological pointof view was introduced by Bott and Taubes [9]; configuration spaceintegrals are because of this sometimes even called Bott-Taubes inte-grals in the literature (more on Bott and Taubes work can be foundin Section 3.3). The point of this early work was to use configurationspace integrals to construct a knot invariant in the spirit of the classicallinking number of a two-component link. This invariant turned out tobe of finite type (finite type invariants are reviewed in Section 2.3) andD. Thurston [51] generalized it to construct all finite type invariants.We will explain D. Thurstons result in Section 3.4, but the idea is asfollows:

    Given a trivalent diagram (see Section 2.3), one can construct abundle

    : Conf[p, q;K3,Rn] K3,

  • Configuration space integrals and knots 3

    where K3 is the space of knots in R3. Here p and q are the numbers ofcertain kinds of vertices in and Conf[p, q;K3,Rn] is a pullback spaceconstructed from an evaluation map and a projection map. The fiber of over a knot K K3 is the compactified configuration space of p + qpoints in R3, first p of which are constrained to lie on K. The edges of also give a prescription for pulling back a product of volume formson S2 to Conf[p, q;K3,Rn]. The resulting form can then be integratedalong the fiber, or pushed forward, to K3. The dimensions work outso that this is a 0-form and, after adding the pushforwards over alltrivalent diagrams of a certain type, this form is in fact closed, i.e. it isan invariant. Thurston then proves that this is a finite type invariantand that this procedure gives all finite type invariants.

    The next generalization was carried out by Cattaneo, Cotta-Ramu-sino, and Longoni [12]. Namely, let Kn, n > 3, be the space of knots inRn. The main result of [12] is that there is a cochain map

    (1) Dn (Kn)

    between a certain diagram complex Dn generalizing trivalent diagramsand the deRham complex of Kn. The map is given by exactly the sameintegration procedure as Thurstons, except the degree of the form thatis produced on Kn is no longer zero. Specializing to classical knots(where there is no longer a cochain map due to the so-called anoma-lous face; see Section 3.4) and degree zero, one recovers the work ofThurston. Cattaneo, Cotta-Ramusino, and Longoni have used the map(1) to show that spaces of knots have cohomology in arbitrarily highdegrees in [13] by studying certain algebraic structures on Dn that cor-respond to those in the cohomology ring of Kn. Longoni also proved in[33] that some...